Name: \qquad
School: \qquad
Class: \qquad Adm.No \qquad
Date: \qquad
Sign: \qquad
121/1
MATHEMATICS
PAPER 1
TIME: 2 ½ HOURS

MOKASA JOINT EXAMINATION-2020
 Kenya Certificate to Secondary Education MATHEMATICS (PAPER 1)
 TIME: 2 ½ HOURS

Instructions

- Write your name, class, admission number, school, date and signature in spaces provided above.
- The paper contains two sections \boldsymbol{A} and \boldsymbol{B}.
- Answer all questions in section \boldsymbol{A} and any fivequestions from section \boldsymbol{B} in the spaces provided below each question.
- Show all the steps in your calculations giving your answers at each stage in the spaces below each question.
- Non-programmable silent electronic calculator and mathematical tables may be used except where stated otherwise.

For Examiner's Use Only

SECTION A

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

SECTION B

17	18	19	20	21	22	23	24	TOTAL

SECTION A (50 MARKS)

Answer all questions in this section in the spaces provided

1. Without using a calculator or mathematical tables, evaluate:
(3 marks)

$$
\frac{8 \div 2+12 \times 9-4 \times 6}{56 \div 7 \times 2}
$$

2. A farmer has a piece of land measuring 840 mby 396 m . He divides it into square plots of equal size. Find the maximum area of one plot.
3. Use factor method to evaluate the expression below leaving your answer as a product of its prime factors in power form.

[^0]4. Simplify completely.
$$
\frac{2 m x+3 p x-2 m k-3 p k}{x-k}
$$
5. The length of a rectangle has increased in the ration $3: 2$ and the width reduced in the ratio $4: 5$. If the original length and width were 18 cm and 15 cm respectively. Find the ratio of change in its area.
6. A boy has metal of density $14000 \mathrm{~kg} / \mathrm{m}^{3}$. He intends to use it to make a rectangular pipe with external dimensions of 18 cm by 10 cm and internal dimensions of 15 cm by 8 cm . The length of the pipe is 150 cm .Calculate the mass of the pipe in kg .
(3 marks)
7. A two-digit number is 18 more than the number formed by reversing the digits. If the sum of the digits is 10 . Find the number.
8. In a regular polygon each exterior angle is 90° less than eacheinterior angle. Calculate the number of sides of the polygon hence give its name
(3 marks)
9. Use tables of cubes, cube roots and reciprocals, correct to four significant figures, to evaluate:
10. Solve for y in the equation
11. Find the equation of the perpendicular to the line $x+2 y=4$ point $(3,2)$. Express your answer in the form $y=m x+c_{2}, Q^{8}$
12. Solve the inequalities and represent the solution on a number line.
$\frac{x-3}{-3}<1$
$3 x+1>-17$
13. The figure PQRS below is a regular tetrahedron of side 4 cm .

Draw its net and find the surface area.

14. Two similarsolids whose densities are each $1 \mathrm{~g} / \mathrm{cm}^{3}$ are such that the first has a height of 5 cm and a volume of $120 \mathrm{~cm}^{3}$. The second has mass of 3240 g . Find the height of the second solid.
(3 marks)
15. A bank in Canada offers the following exchange rates between Canadian dollars (CAD) and Euros (EUR) .The bank sells 1CAD for 0.82EUR and buys 1CAD for 0.78 EUR. A customer wishes to exchange 800 CAD for Euros. After spending 200 Euros he decided to sell the remaining Euros. How much Canadian dollars did he get after selling the remaining amount to the bank?
(3 marks)
16. Given the curve $y=x^{3}-3 x-1$, find the equation of the tangent to the curve at the point (1,-3).
(4 marks)

SECTION B (50 MARKS)

Answer any five questions in this section
17. Wafula left Bungoma at 8.00 a.m. towards Nairobi through Kisumu at an average speed of $90 \mathrm{~km} / \mathrm{hr}$. Kilima also left Bungoma at 8.21 a.m. towards Nairobi along the same road at an average speed of $97 \mathrm{~km} / \mathrm{hr}$.
(a) Determine
(i) the time Kilima caught up with Wafula.
(4 marks)
(ii) the distance from Bungoma when Kilima caught up with Wafula.
(2 marks)
(b) Musumbéa left Kisumu towards Bungoma on the same day at 8.40 a.m. at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. He met Wafula after 45 minutes of his drive. Determine the distance between Bungoma and Kisumu.
18. A school ordered books worth Ksh. 28,000 priced at Ksh. X each. Because of the number involved the supplier reduced the price of each book by Ksh. 10 and the school finally decided to spend Ksh. 27,300 on the books.
(a) Write down expressions for
(i) The number of books originally ordered.
(1 mark)
(ii) The number of books finally obtained.
(1 mark)
(b) If the second number is 10 more than the first, write down the equation which X satisfy. Hence find the price at which the school bought the books. (6 marks)
(c) Find the ratio of the number of books to be bought originally to the number of books bought finally.
19. The figure below is triangle $O A B$ in which $\mathbf{O A}=\mathbf{a}$ and $\mathbf{O B}=\mathbf{b} . \mathrm{M}$ and N are points on $\mathbf{O A}$ and $\mathbf{O B}$ respectively such that $O M: M A=1: 3$ and $O N: N B=2: 1$.

(a) Express the following vectors in terms of \mathbf{a} and \mathbf{b}
(i) $\mathbf{A M}$
(1 mark)
(ii) $\mathbf{B M}$
(1 mark)
(iii) $\mathbf{A B}$
(1 mark)
(b) Lines $A N$ and $B M$ nitersect at X such that $A X=h A N$ and $B X=k B M$. Express $O X$ in two different ways and find the value of h and k.
(c) $\quad O X$ produced meets $A B$ at Y such that $A Y: Y B=3: 2$. Find $A Y$ in terms of a and b.
20. The figure below shows circumscribed circle centre C. Chords $X Y$ and $Y Z$ measures 5 cm and 7 cm respectively. Angle $Y X Z=48^{\circ}$.

Calculate;

(a) the length of chord $Y Z$
(b) the radius of the circle.
(2 marks)
(c) Area of the triangle $X Y Z$
(2 marks)
(d) Area of the shaded region.
(3 marks)
21. Draw the graph of $y=2 x^{2}+x-1$ for $-4 \leq x \leq 4$. Use a scale of 1 cm to represent 1 unit on the x-axis and 1 cm to represent 2.5 units on the y-axis.

x	-4	-3	-2	-1	0	1	2	3	4
y									
Use the graph to solve;									
(a) $2 x^{2}+x-1=0$									
(b) $2 x^{2}+x-11=0$									
(c) $2 x^{2}-5=0$									

22. The figure below shows two circles $A B E F$ and $B C D E$ intersecting at B and E. ABC and FED are straight lines. The line AEG is a tangent to the circle BCDE at E. O is the centre of circle ABEF. $A E$ and $B F$ intersect at K while $B D$ and $C E$ intersect at L . Angle $A E F=42^{0}$ and angle $B D E=38^{0}$

Find the size of the following angles, stating the reasons in each case.
(a) BCE
(b) $B E F$
(2 marks)
(c) $\quad \mathrm{FBE}$
(2 marks)
(d) ELD
(2 marks)
(e) KFO
(2 marks)
23. The figure below shows a frustum of a right pyramid whose top face is a rectangle of side 3 cm by 5 cm and the bottom face is also a rectangle of side 6 cm by 10 cm . The perpendicular distance between the top and bottom faces (height) is 25 cm .

Find;
(a) the volume of the frustum.
(b) The surface area of the frustum.
24. $P Q R$ is a triangle with coordinates; $P(3,3), R(2,1)$ and $Q(5,1)$. $P^{\prime} Q^{\prime} R^{\prime}$ is the image of PQR under an enlargement such that the coordinates are $P^{\prime}(-3,0), Q^{\prime}(-7,4)$ and $R^{\prime}(1,4)$. Using a scale of 1:1 on both axes;
(a) (i) Plot PQR and $P^{\prime} Q^{\prime} R^{\prime}$ hence locate the centre of enlargement by construction.
(4 marks)
(ii) State the scale factor of the enlargement.
(2 mark)
(b) $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ is the image of PQR under a translation $T\binom{1}{3}$. Plot $P " Q " R "$.
(2 marks)
(c) $P^{\prime \prime \prime} Q^{\prime \prime \prime} R^{\prime \prime \prime}$ is the image of PQR under a reflection whose mirror line is $y=-2$. Plot $P^{\prime \prime} Q^{\prime \prime \prime} R^{\prime \prime \prime}$.
(2 marks)

[^0]: $\sqrt{5184 \times 49}$

