Name: $\qquad$ Class: $\qquad$ Adm.No. $\qquad$

232/1
Candidate's Signature: $\qquad$
PHYSICS
THEORY
Paper 1
March - April 2020
Time: 2 hours

# MOKASA JOINT EXAMINATION MARCH - APRIL 2020 <br> Kenya Certificate of Secondary Education PHYSICS <br> PAPER 1 

## Instructions to Candidates

- Write your name, admission number, class and signature in thespaces provided at the top of the page. This paper consists of two sections; $\boldsymbol{A}$ and $\boldsymbol{B}$.
- Answer ALL the questions in the spaces provided.
- Mathematical tables and electronic calculator may beaised.
- This paper consists of 11 printed pages.
- Candidates should answer the questions in English
- You may use the following constants where necessary:-

$$
\mathrm{g}=10 \mathrm{~N} / \mathrm{kg} \text {, or } \mathrm{m} / \mathrm{s}^{2}
$$

Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

FOR EXAMINER'S USE ONLY

| SECTION | QUESTIONS | MAXIMUM SCORE | CANDIDATE'S SCORE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{A}$ | 12 | 25 |  |  |  |  |
| $\mathbf{B}$ | 13 | 12 |  |  |  |  |
|  | 14 | 15 |  |  |  |  |
|  | 15 | 09 |  |  |  |  |
|  | 16 | 09 |  |  |  |  |
|  | TOTAL SCORE |  |  |  | 10 |  |
|  |  | $\mathbf{8 0}$ |  |  |  |  |
|  |  |  |  |  |  |  |

## SECTION A(25 MARKS)

1. State the difference between heat and temperature
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
2. The acceleration due to gravity on Jupiter is about 2.6 times that on earth. A spacecraft has a weight of 24500 N on earth.
a) What is the mass of the spacecraft?
b) What would be the weight on Jupiter? (take ăcceleration due to gravity on earth as $10 \mathrm{~N} / \mathrm{Kg}$ )
3. Use kinetic theory to expfain pressure law
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
4. The figure below shows a uniform block of mass 10 kg and length 35 cm lying on a table. It hangs over the edge of the table by 15 cm .


Determine the minimum force that can be applied on the block at point B to make it turn about the edge of the table.
5. Compare diffusion of chlorine gas into air and into vacuum then explain your comparison
(2marks)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
6. Two identical aluminum rods are placed as shown in the figure below. One rests on a metal block and the other on the wooden block. The protruding ends are heated on a Bunsen burner as shown below:


State with reason in which bar the wax is likely to melt
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
7. Figure below shows one method of measuring the specific latent heat of fusion of ice. Two funnels A and B contain crushed ice at $0^{\circ} \mathrm{C}$.


The mass of melted ice from each funnel is measured after 11 minutes. The results are shown below. Mass of melted ice in $A=24 \mathrm{~g}$, Mass of melted ice in $B=63 \mathrm{~g}$.If the power of the heater is 0.024 Kw , determine the specific latent heat of fusion of ice.
(3marks)
8. An ungraduated mercury thermometer attached to a millimeter scale reads 24 mm in ice at $0^{\circ} \mathrm{C}$ and 250 mm in steam of water at $100^{\circ} \mathrm{C}$. Calculate its reading on a day when the temperature is $30^{\circ} \mathrm{C}$.
9. Sketch a pulley system with a velocity ratio of 4 using 3 pulleys
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
11. Why is the capillary bore of liquid in glass thermometer narrow
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## SECTION B (55 marks)

## 12. a) State the principle of conservation of momentum


b)A bullet of mass 20 g travelling horizontally at a speed of $250 \mathrm{~m} / \mathrm{s}$ hits a stationary block of wood of mass 1000 g on a rough table surface. The bullet emerges on the other side of the block at a velocity of $90 \mathrm{~m} / \mathrm{s}$
i) State the types of collision involved above

ii) Determine the initial velocity of the block after being hit by the bullet (3marks)
iii) If the block travels at a distance of 5m, determine;
I. the deceleration on the block
II. frictional force on the block
III. coefficient of friction on the surface
13. a) State the law of floatation.
$\qquad$
$\qquad$
$\qquad$
b) A piece of sealing wax weighs 3 N in air and 0.22 N when immersed in water. Calculate i) its relative density
ii) its apparent weight in a liquid of density $800 \mathrm{~kg} / \mathrm{m}^{3}$
c)The figure below shows a uniform beam one metre long and weighing 2 N kept in horizontal position by a body of weight 5 N immersed in a liquid


Determine the upthrust on the load
(3marks)
d) A block of wood of volume $V$ floats with 0.75 of its volume submerged in water. When put in another liquid it floats with 0.42 of its volume under the liquid. Calculate:
i. the density of the wood
14. a) Explain why bodies in circular motion undergo acceleration even when their speed is constant.
(2marks)

$\qquad$
$\qquad$
$\qquad$
.............................................................. sis
b) A stone of mass 40 g is tied to the end of a string 50 cm long and whirled in a vertical circle making 2 revolutions per second. Cafculate the maximum tension in the string.
c) Figure below shows a stone being whirled in a vertical circle in the clockwise direction.


On the axes provided, sketch a graph of tension against time as the stone moves through points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .


Time (s)
c) State two applications of uniform circular motion.
15. a) The figure below shows a simple mercury barometer

i. when the tube was tilted mercury did not fill the tube completely. Give a reason for the observation
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
ii. give a reason why mercury is preferred as a liquid in a glass barometer
(1mark)
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
iii. A town at an altitude of 548 m has a barometric height of 70 cmHg .Given that the standard atmospheric pressure is 76 cmHg and that the density of mercury is $13600 \mathrm{~kg} / \mathrm{m}^{3}$, determine the density of air
b) A student half-filled a container withwater, boiled the water for several minutes with the cork removed. Then later replaced the cork and poured some cold water on the container. State and explain the observation made

c)Determine the pressure on a piston of cross-sectional $20 \mathrm{~cm}^{2}$ when a force of 50 MN is applied to its surface
16. In an experiment to determine the approximate diameter of an oil molecule,the following measurements were obtained:
-diameter of oil drop $=0.05 \mathrm{~cm}$
-diameter of oil patch $=0.2 \mathrm{~m}$
Determine:
i. volume of oil drop (3marks)
ii. area of oil patch
iii. thickness of oil molecule
iv. state two assumptions made in the above experiment

$\qquad$
$\qquad$

