Name......ADM.....

SchoolDate.....

233/3 CHEMISTRY **PAPER 3** PRACTICAL

JULY, 2021 **Time: 2 ¹⁄**4 **Hours**

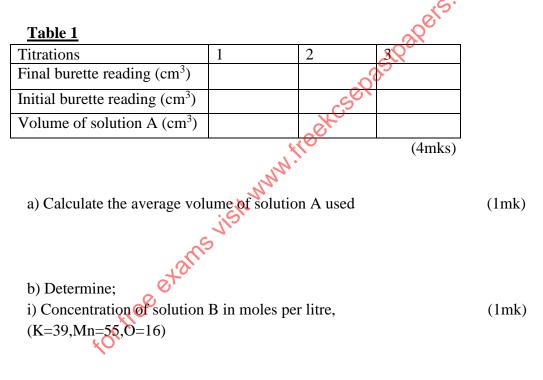
MOKASA I

Kenya Certificate of Secondary Education (K.C.S.

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Sign and write the date of examination in the spaces provided.
- Answer **all** the questions in the spaces provided in the question paper
- You are **not** allowed to start working with the apparatus for the first 15 minutes of the 2¹/₄ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus required.
- All working **must** be clearly shown where necessary
- Mathematical tables and electronic calculators may be used.
- This paper has **7** printed pages. Check to confirm that it is so.

FOR EXAMINER'S USE ONLY


QUESTION	Max Score	Candidate Score
1	22	
2	10	
3	08	
TOTAL	40	

1(a) You are provided with:

- Solution A ,containing 39.2g/l of FeSO₄(NH₄)₂SO₄.nH₂O
- Solution B Containing 3.0g/l of KMnO₄. You are required to determine;
- The concentration of solution A in moles per litre
- The number of moles of (n) of water of crystallization in FeSO₄(NH₄)₂SO₄.nH₂O

Procedure

- Fill the burette with solution A.
- Using a pipette filler, pipette 25.0cm³ of solution B into a conical flask and titrate with solution A until a pink colour just appears.
- Record the volume of solution A used in the table below. Repeat the experiment twice and fill the table.

ii) Number of moles of solution B used. (1mk)

c) Given that the ionic equation for the reaction is: $MnO_{4^{-}(aq)}+8H^{+}_{(aq)}+5Fe^{2+}_{(aq)} \rightarrow Mn^{2+}_{(aq)}+5Fe^{3+}_{(aq)}+4H_{2}O_{(1)}$ Determine the;

i) Concentration of solution A in mole per litre

ii) Relative formula mass of FeSO₄(NH₄)₂SO₄.nH₂O

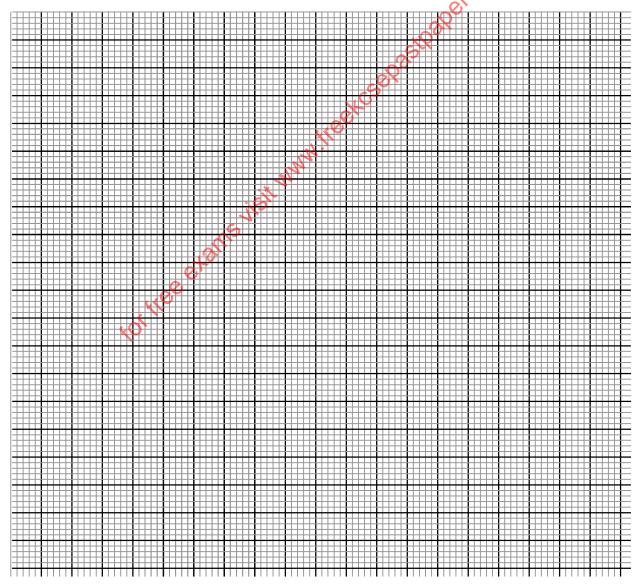
(1mk)

(1mk)

iii) Number of moles of water of crystallization (n) in FeSO4(NH4)2SO4.nH2O (1mk)

b. You are provided with 2.0g of solid \mathbf{R} in a boiling tube.

You are required to determine the solubility of solid \mathbf{R} at different temperatures.


Procedure

- (i) Using a burette, add 3.0 cm³ of distilled water into the boiling tube with solid **R**.
- (ii) Gently heat the boiling tube, while stirring the contents carefully with a thermometer until the crystals of the dissolve completely.
- (iii)Remove the boiling tube from the flame and allow the contents to cool while stirring with the thermometer. Note the temperature at which crystals **just** appear and record it in Table II below.
- (iv)Add 2.0cm³ of distilled water from the burette into the boiling tube containing the mixture and repeat steps (ii) and (iii) above.
- (v) Repeat step (iv) three more times.
- (vi)Calculate the solubility of solid **R** in water at the different temperatures and complete table 2.

Table 2

Temperature at which crystals just appear(°C)	Solubility of solid R in water (g/100g of water)
	which crystals just

- (5½ marks)
- a) On the grid provided, plot a graph of solubility of solid R (vertical axis) against temperature(horizontal axis) (3 marks)

b)	From your graph, determine (i)The temperature at which 35g of solid R would dissolve in 100 cm ³ of water.	(1mk)
	(ii) The solubility of solid R at 50°C.	(1mk)

(iii) State how solubility varies with temperature. (½mk)

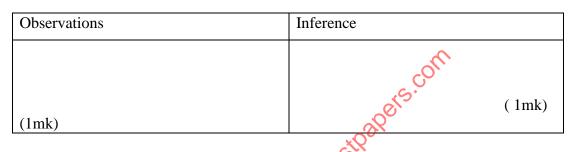
2. You are provided with solid **Q**. Carry out the tests below and record your observations and inferences in the spaces provided.

(a) Place all of solid Q in a clean boiling tube. Add about 10cm³ of distilled water and shake. Divide the resulting solution into 4 equal portions.

	υ	
Observations		Inference
		AST
		CSOX CONTRACTOR
	e e	
	(1mk)	(1mk)
	, la	

(i)To the 1st portion, add drops of sodium sulphate solution.

Observations		Inference
etall		
KIOO		
for	(1mk)	(1mk)


(ii) To the 2nd portion, add sodium hydroxide solution dropwise until excess.

Observations	Inference
(1mk)	(1mk)

(iii) To a 3 rd	portion, add	ammonia	solution	dropwise	until in excess.
(11) 10 4 5	portion, aud	ummoniu	Solution	urop wise	until in excess.

Observations	Inference
(1mk)	(1mk)

(iv) To the fourth portion, add 2-3 drops of acidified barium nitrate solution.

- 3. You are provided with solid **F**. Carry out the tests and record your observations and inferences in the spaces provided.
 - (i) Place half a spatulaful of solid F in a non luminous flame to ignite.

(1mk)

(ii) Place the rest of the solid in a test-tube. Add about 6cm³ of distilled water and shake the mixture well. Divide the solution into 3 portions.

Observations	Inference
	(14m1r)
(½mk)	(½mk)

(iii) To about 2cm³ of the solution, add a spatulaful of sodium hydrogen carbonate.

Observations	inference
	(1mlr)
(1mk)	(1mk)

(iv)To about 2cm³, add 2 drops of acidified potassium manganate (vii) solution.

Observations	Inference
	e.com
(1mk)	(½mk)

(v) To another 2cm³, add 2 drops of bromine water.

Observations	Inference
cit www.	
	(½mk)
for free exams	

THIS IS THE LAST PRINTED PAGE