Name \qquad ADM Number

Candidate's signature \qquad Index Number. \qquad .Class \qquad
121/1
MATHEMATICS
Paper 1
June/July, 2021
Time 2½ Hours

MOKASA ONE EXAMINATION

Kenya Certificate of Secondary Education

121/1
MATHEMATICS
Paper 1
June/July, 2021
$2 ½$ Hours

Instructions to candidates

a) Write your name and index number in the spaces provided above.
b) Sign and write the date of examination in the spaces provided above.
c) This paper consists of two sections: Section I and Section II.
d) Answer all the questions in Section I and only five questions from Section II.
e) Show all the steps in your calculations, givingyour answers at each stage in the spaces provided below each question.
f) Marks may be given for correct working even if the answer is wrong.
g) Non-programmable silent electronigcalculator and KNEC mathematical tables may be used, except where stated otherwise.
h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
i) Candidates should answer the questions in English.

For examiner's use only

Section 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section II

17	18	19	20	21	22	23	24	Total

SECTION I (50 marks)

Answer all the questions in section I

1. Evaluate

$$
\frac{3 / 4+1^{5} / 7 \div 4 / 7 \text { of } 2^{1 / 3}}{\left(1^{3 / 7}-5 / 8\right) x^{2 / 3}}
$$

2. Simplify $\frac{8 x^{2}+6 x-9}{16 x^{2}-9}$
3. Two similar solid cones made of the same material have masses of 8000 g and 1000 g respectively. If the base area of the smaller cone is $77 \mathrm{~cm}^{2}$, calculate;
a) The base area of the larger cone
b) The radius of the larger cone
4. Given that $\cos (2 x)^{\circ}-\sin (4 x+30)^{\circ}=0$. Calculate the value of x
5. A line L passes through point $(3,1)$ and is perpendicular to the line $2 y=4 x+5$. Determine the equation of the line L.
6. A Kenyan tourist left Germany for Kenya through Switzerland. While in Switzerland, he bought a watch worth 52 Deutsche-marks. Using the exchange rates below.
1 Swiss Franc = 1.28 Deutsche Marks
1 Swiss Franc $=45.21$ Kenya shillings
Find the value of the watch to the nearest
(i) Swiss Franc
(ii) Kenya shillings
(2 marks)
7. State all integral values of x which satisfy the following pair of inequalities.

$$
\begin{aligned}
& 3-x \leq 1-\frac{1}{2} x \\
& \frac{1}{2}(x-5) \leq 7-x
\end{aligned}
$$

8. A man is now three times as old as his daughter. In twelve years time he will be twice as old as his daughter. Find their present ages.
9. The point $A(3,2)$ is mapped onto $A^{1}(7,1)$ under a translation T. Find the co-ordinates of the image of $\mathrm{B}(4,6)$ under the same translation.
(3 marks)
10. Calculate the area of the trapezium below.

11. Two machines A and B working together can do some work in 6 days. After 2 days machine A breaks down and it takes machine B 10 days to finish the renlaining work. How long will it take machine A alone to finish the whole work if it does not break down.
(3 marks)
12. Solve for K in the equation.

$$
\left(\log _{3} K\right)^{2}=\frac{1}{2} \log _{3} K+\frac{3}{2}
$$

13. A square brass plate is 2 mm thick and has a mass of 1.05 kg . The density of the brass plate is $8.4 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the length of the plate in cm .
14. The sum of interior angles of two regular polygons of side $n-1$ and n are in the ratio 4:5. Calculate;
(i) the value of interior angle of the polygon with side (n-1)
(ii) exterior angle
15. Four athletes Onyango, Korir, Njuguna and Mutua can complete a 2 km lap in a field in 12 minutes, 15 minutes, 18 minutes and 20 minutes respectively. If they start the race together, find the number of times the slowest athlete will be overlapped by the fastest athlete by the time they next cross the finish line simultaneously.
16. The figure below shows a right angled triangular prism. Given that $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=3 \mathrm{~cm}$ and $B D=6 \mathrm{~cm}$. Draw its net.

17. Four towns $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are such that Q is 160 km from town P on a bearing of 065°. R is 280 km on a bearing of 152° from Q. S is due west of R on a bearing of 155° from P . Using a scale of 1 cm to represent 40 km .
a) Show the relative positions of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S .
b) Find the bearing of;
(i) S from Q
(ii) P from R
c) Find the distance
(i) PS
(ii) RS
18. a) Complete the table below for

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5	4
$\mathrm{y}=4 \mathrm{x}^{2}-\mathrm{x}^{3}$	5	1.1	0							6.1	

b) On the grid provided, draw the graph of $y=4 x^{2}-x^{3}$ for $-1 \leq x \leq 4$

c)i) use the graph to find the rots of $x^{3}-4 x^{2}+4=0$
ii) On the same axis, draw the graph of $2 y=x+6$ and state the values of x for which the two graphs intersect.
(3 marks)
19. A particle moves from rest and attains a velocity of $10 \mathrm{~m} / \mathrm{s}$ after two seconds it then moves with $10 \mathrm{~m} / \mathrm{s}$ velocity for 4 seconds. It finally decelerates uniformly and comes to rest after 6 seconds.
a) Draw a velocity time graph for the motion of this particle
b) From the graph find;
(i) the acceleration during the first two seconds.
(ii) the uniform deceleration during the last six seconds.
(iii) the total distance covered by the particle
20. a) Find the gradient of a line L_{1} perpendicular to the line whose equation is $y=4 x+4$
b) Calculate the angle in which line L_{1} is making with
(i) x -axis
(2 marks)
(ii) y-axis
c) Line L_{2} is passing through the x-axis at 2 and point $T(-2, k)$ and it is parallel to line L_{1}. Calculate the value of K .
(2 marks)
d) Another line L_{3} is perpendicular to line L_{2} and passes through point T. Calculate the equation of line L_{3} leaving your answer in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$
21. In the figure below P, Q, R and S are points on the circle centre O. PRT and USTV are straight lines. Line UV is a tangent to the circle at S. Angle RST is 50° and angle RTV is 150°.
a) Calculate the size of:
i. angle ORS
ii. angle USP
iii. angle PQR
b) Given that $\mathrm{RT}=7 \mathrm{~cm}$ and $\mathrm{ST}=9 \mathrm{~cm}$, calculate to three significant figures:
i. the length of line PR
ii. the radius of the circle.
22. In the triangle below $\mathbf{O A}=\mathbf{a}$ and $\mathbf{O B}=\mathrm{b} . \mathrm{M}$ is the midpoint of AB and N is a point on OB such that $\mathrm{ON}=\frac{1}{3} \mathrm{OB}$. AN and OM intersect at P .

a) Express the following vectors in terms of \mathbf{a} and \mathbf{b}
(i) AB
(ii) OM
(iii) AN
b) If $\mathrm{OP}=\mathrm{tOM}$ and $\mathrm{AP}=\mathrm{sAN}$, express OP in two different ways hence find the value of t and s .
c) State the ratio $\mathrm{AN}: \mathrm{NP}$
23. Two circles with centres O_{1} and O_{2} have radii 10 cm and 8 cm respectively and intersect at points A and B . Angle $\mathrm{AO}_{1} \mathrm{~B}=90^{\circ}$ and angle $\mathrm{AO}_{2} \mathrm{~B}=124.23^{\circ}$. Calculate to two decimal places;
a) The length AB
b) The length $\mathrm{O}_{1} \mathrm{O}_{2}$
c) Area of minor segment centre O_{1}
d) Area of quadrilateral $\mathrm{O}_{1} \mathrm{AO}_{2} \mathrm{~B}$
24. A quadrilateral ABCD with vertices $\mathrm{A}(2,6), \mathrm{B}(4,8), \mathrm{C}(5,6)$ and $\mathrm{D}(3,4)$ is mapped onto quadrilateral $A^{I} B^{I} C^{I} D^{I}$ by a reflection in the line $y=-x+5$.
a) On the grid provided draw the quadrilateral ABCD and its image $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ under reflection in the line $y=-x+5$

b) Quadrilateral $A^{\text {II }} B^{\text {II }} C^{I I} D^{I I}$ is the image of quadrilateral $A^{I} B^{I} C^{I} D^{I}$ under a negative quarter turn about $(1,-1)$. On the same grid, draw quadrilateral $\mathrm{A}^{\mathrm{II}} \mathrm{B}^{\mathrm{II}} \mathrm{C}^{\mathrm{II}} \mathrm{D}^{\mathrm{II}}$ and state the coordinates of the image
c) Quadrilateral $A^{\text {III }} \mathrm{B}^{\text {III }} \mathrm{C}^{\text {III }} \mathrm{D}^{\text {III }}$ is the image of quadrilateral $\mathrm{A}^{\text {II }} \mathrm{B}^{\mathrm{II}} \mathrm{C}^{\text {II }} \mathrm{D}^{\text {II }}$ under an enlargement with scale factor -1 about $(1,-1)$. On the sáme grid, draw $\mathrm{A}^{\text {III }} \mathrm{B}^{\text {III }} \mathrm{C}^{\text {III }} \mathrm{D}^{\text {III }}$ and state the co-ordinates of the image.
(2 marks)

