Name:	Class
232/1; PHYSICS PAPER 1	Candidate's Signature:
JUNE/JULY 2021	Date
TIME: $2\frac{1}{2}$ HRS	

MOKASA 1 JOINT EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E.)

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided.
- Mathematical tables and non-programmable calculators may be used.
- This paper consists of four questions.
- Attempt all the questions in the spaces provided.
- ALL working MUST be clearly shown.

For Examiners Use

For Examiners Osc					
SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S		
	i sit w		SCORE		
A	1-10	25			
В	11 200	10			
	,d2	13			
forth	13	12			
	14	13			
	15	07			
	TOTAL	80			

This paper consists of 11 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

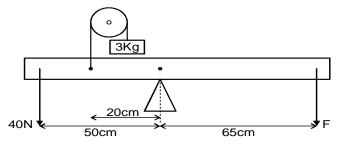
SECTION A (25 MARKS)

Answer all the questions in this section in the spaces provided.

1.	State the meaning of SI unit and give its significance.	(2 marks)
2.	The human lung functioning normally can withstand a pressure of up the How deep in metres can an experienced diver go under water at not	
pre	essure?	
	(1 atm = 10 metres of water)	(2 marks)
	-05	
3.	The figure below is a set up used to study the behavior of gases	
	drop of coloured water capillary tube	
	State and explain fully the observations made if the round bottomed fla	sk is immersed in
	cold water.	(2 marks)

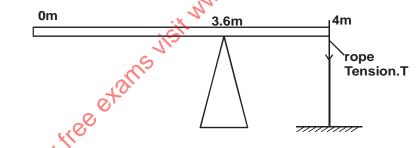
	Matchstick Pin Bunsen burner barrel
	It is observed that the matchstick does not catch flame. Explain this observation
	(2 marks)
5.	When an oil drop is placed on a clean water surface, it spreads to form a thin film. Explain why this happens. (1 mark)
	why this happens.
	"MAY"
6.	A ball of mass 600g falls from a height of 16 m and bounces back to a height of 10 m Calculate the amount of sound energy produced. (Assume no other energy losses)
	(3 marks)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	······································
7.	A balloon is filled with air to a volume of 100ml at a temperature of $30^{\circ}$ C. Determine the volume when the temperature rises to $70^{\circ}$ C at the same pressure. (2 marks)

**4.** The diagram below shows a matchstick placed under a Bunsen burner flame


8.	a) Explain why steam causes more serious burn than water at same temperature. (1 mark)
	b) Steam at 100°C was passed into 100g of cold water at 15°C. When the temperature of the mixture reached 50°C, its mass was found to be 106.1g. Assuming no heat losses to the surrounding, determine the latent heat of vaporization of water. (Take specific heat capacity of water to be 4200 J/kg/K)  (3 marks)
	g
9.	Complete the diagrams below to show the streamlines for a fluid flowing past the stationary object in the direction shown. (2 marks)
	The discrete halos above the sixty of service allies and the increase had a sixty of the sixty o
10.	The diagram below shows the scale of vernier callipers when the jaws are closed
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a)	State the zero error. (1 mark)
b)	A student used the vernier calipers above to measure the length of a cube. If the mass and density of the cube were $6.86g$ and $2.5g/cm^3$ , calculate the reading shown by the instrument. (4 marks)

### **SECTION B** (55 MARKS)

Answer all the questions in this section in the spaces provided.


#### 11.

(a) The figure below represents a system in equilibrium



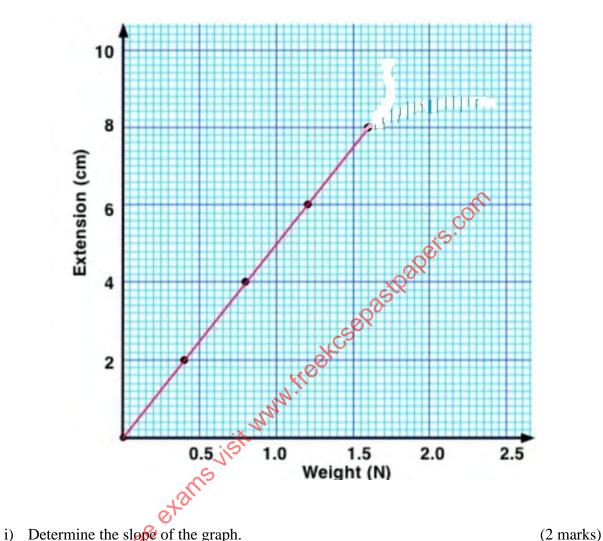
Determine the force F needed to maintain the system at equilibrium. (3 marks)

(b) A uniform rod of length 4m and mass of 4kg is pivoted at 3.6m mark. The rod is held horizontal with a vertical rope at the 4m mark, as shown in the figure below.



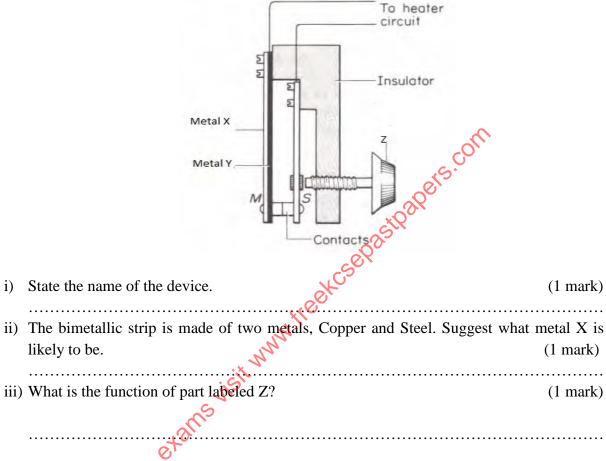
Calculate the tension, T in the rope (Take g = 10N/kg) (3 marks)

(c)	State two conditions necessary for a body acted upon by a number of para	llel forces to
	remain at equilibrium.	(2 marks)
(d)	Explain why a bunsen burner has a heavy and wide base.	(2 marks)
		•••••
	colli	•••••
12.	(a) (i) State Newton's second law of motion.	(1 mark)
	Eige	
	(ii) A striker kicks a ball of mass 250g initially at rest with a force of 75N foot was in contact with the ball for 0.10 s. Calculate the take off velo	. If the
	the ball.	(2 marks)
	jisit	
	atalis	
(b)		5 kg ogether on a
	(i) Determine the initial common velocity of bullet and wooden block.	(3 marks)
		•••••


	(ii) What distance does the block move before coming to rest?	(3 marks)
(c)	A high jumper usually lands on a thick soft mattress. Explain how the mattress reducing the force of impact.	s helps in (1 mark)
(d)	The figure below shows a graph of velocity against time for a ball bearing released at the surface of a viscous liquid.	
	The figure below shows a graph of velocity against time for a ball bearing released at the surface of a viscous liquid.  Velocity (m/s)  Time (s)	
	Explain the motion of the ball bearing for parts.	
	(i) OA	(1 mark)
	604.	
	(ii) AB	(1 mark)
(e)	Give a reason why it is important that passengers in vehicles put on safety belts.	(1 mark)
•		•••••

	• •	•	•
	В	С	D
i.	State the type of current that was use	•	(1 mark)
	Determine the initial velocity of the	trolley, AB.	(2 marks)
iii.  	Determine the final velocity of the transfer o	rolley, CD	(2 marks)
iv	Determine the acceleration of the tro		(2 marks)
(ł	A bullet is fired horizontally at a velo If it strikes the ground after 1.5 seco	ocity 200 m/s from the roof	
	i) What is the name given to th	e path followed by the bull	
	ii) Calculate the height of the b	uilding.	(2 marks)

13. (a) The figure below shows a section of a tape (drawn to scale) after passing through a ticker


	iii)	Calculate the distaground.	ance from the foot of	of the building to w	where the bullet hits the (2 marks)
14. a)	i) Define	proportionality limi	t for an elastic mate	erial.	(1 mark)
	removed.		_	,5	Dength when a load is (1 mark)
b)	A pan is a		er end of a hanging	spring of natural l	ength 12 cm. When an becomes 25 cm. For an comes 30cm. Calculate (4 marks)
			NN KO		
			· Git Wa		
		kortiee exams	, jus		comes 25 cm. For an comes 30cm. Calculate (4 marks)

c) A spring and several masses were used in an experiment to determine spring constant. Below is a graph of extension against weight plotted from the experimental results.



-/		(=/
	40	
ii)	Determine the spring constant of the spring used in the experiment.	
		•••••
		• • • • • • • • • • • • • • • • • • • •
iii)	Calculate the elastic potential energy stored in the spring.	(2 marks)

- iv) On the same graph page sketch the expected graph if two such identical springs arranged in parallel were used during the experiment. (1 mark)
- (a) The figure below shows a circuit diagram for controlling the temperature of a room. **15.**



	Briefly explain how it works.	
iv)	Briefly explain how it works.	(3 marks)
b)	State the advantage of alcohol in glass thermometer over mercury in glass therm	ometer. (1 mark)

likely to be.