\qquad
Class: \qquad
Signature: \qquad

MOKASA EXAMINATION

Kenya Certificate to Secondary Education PHYSICS PAPER 3
 PRACTICAL

Instructions

- Write your name, admission number, class and signature in the spaces provided at the top of the page.
- Answer all the questions in the spaces provided in this paper.
- You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully beforeyour start.
- Marks will be given for clear record ofobservations actually made, for their suitability and accuracy, and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Electronic calculators and mathematical tables may be used.

FOR EXAMINER'S USE ONLY

Question(s)	Maximum Score	Candidate's Score
1	20 marks	
2	20 marks	
TOTAL	$\mathbf{4 0}$ marks	

This paper consists of 7 printed pages. Candidates are advised to check and to make sure all pages are printed.

1. You are provided with the following apparatus.

- Voltmeter
- A resistance wire, W mounted on a mm scale
- Two dry cells and cell holders
- 6 connecting wires
- A switch
- A jockey
- Micrometer screw gauge (to be shared)

Proceed as follows:
(a) Connect your apparatus as shown in the figure befow

(b) Measure the diameter, d of the resistance wire using a micrometer screw gauge.
d \qquad mm
(1/2 mark)
d \qquad m (1/2 mark)
(c) Place the jockey at $\mathrm{L}=10 \mathrm{~cm}$, close the switch S . Read and record in the table the voltmeter reading.
(d) Repeat the procedure in (c) for other values of \mathbf{L} and complete the table

Length, L. (cm)	10.0	20.0	30.0	40.0	50.0	60.0
Voltmeter, V(V)						
$\frac{1}{L}\left(\mathrm{~m}^{-1}\right)$						
$\frac{1}{V}\left(\mathrm{~V}^{-1}\right)$						
(e) Plot a graph of $\frac{1}{V}$ (y-axis) against $\frac{1}{L}$.						

T																				T-	Tol	WIT		
															\bigcirc									
																							-	
																							θ	
													0											
										J														
								-																
								3																
																							O	
																							\#	
																							-	
																							-	

(f) Determine the slope, \mathbf{S} of the graph
(3 marks)
(g) Given that the y-intercept $\mathbf{C}=\frac{1}{E}$, find the value of \mathbf{E}.
(2 marks)
(h) Given that slope \mathbf{S} is given by $S=\frac{\pi d^{2}}{\beta E}$ find thevalue of $\boldsymbol{\beta}$ (2 marks)
2. You are provided with the following apparatus:

- 1 rectangular glass block
- 4 optical pins
- 4 thumb tucks
- 1 soft board
- 1 plain paper

Proceed as follows:
(a) Fix the plane sheet of paper on a soft board using thumbtucks as shown in the figure below

(b) Place theglass block on the sheet of paper so that it rests on its broader face-ând trace the outline PQRS.
(c) Remove the glass block.
(d) Draw a perpendicular to PQ at 0 such that PO is about $1 / 4 \mathrm{PQ}$.
(e) Draw a line AO such that angle $x=15^{\circ}$
(f) Replace the glass block.
(g) Stick two optical pins P_{1} and P_{2} on the line AO .
(h) While looking through the glass block from side, SR , stick pins P_{3} and P_{4} such that they appear to be in a straight line with the images of pins P_{1} and P_{2}.
(i) Remove the glass block and pins.
(j) Draw a line through the holes made by pins P_{3} and P_{4} tomeet $S R$ at C.
(k) Join C to O .
(I) Measure and record angle, y.
(m) Repeat procedure (e) to (I) for $x=25^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}$ and 60° and tabulate the data
(n) Complete the table for values of $\sin \left(90^{\circ}-x\right)$ and $\cos y$. (8 marks)

$X\left({ }^{0}\right) O^{\prime}$	15^{0}	25°	30^{0}	40^{0}	50^{0}	60^{0}
$Y\left({ }^{0}\right)$						
$\operatorname{Sin}(90-x)$						
$\cos y$						

(o) Plot a graph of $\cos y\left(y\right.$-axis) against $\sin \left(90^{\circ}-x\right)$.

(p) Find the slope, \mathbf{S}, of the graph. (3 marks)

(q) Given that, $t \cos y=\sin \left(90^{\circ}-x\right)$, where t is a constant, use your graph to find the value of t.
(2 marks)
(r) Identify the significance of constant, t
(1 mark)

NB: Hand in the trace-out together with your question paper

