Name	_Index No
Candidate's Signature	Date
233/2	
CHEMISTRY	
PAPER 2	
THEORY	
SEPTEMBER 2021	
2 HOURS	

KASSU JET 2021 CHEMISTRY PAPER 2 Kenya Certificate of Secondary Education (K.C.S.E)

INSTRUCTIONS TO CANDIDATES

- 1. Write your name and index number in the spaces provided above.
- 2. Sign and write the date of examination in the spaces provided above.
- 3. Answer all the questions in the spaces provided.
- 4. Mathematical tables and silent electronic calculators may be used.
- 5. All working **must** be clearly shown where necessary.

FOR EXAMINER'S USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1 wisik	12	
200	11	
00×3	11	
4	16	
5	14	
6	16	
Total score	80	

This paper consists of 13 printed pages

1. The diagram below shows the set-up of the apparatus used by a student to determine the enthalpy change of combustion of ethanol. The heat produced by burning fuel warms a known mass of water.

(ii) Find the molar enthalpy of combustion of ethanol. $(C = 12, H = 1, O = 16)$	(2 marks)
(c) An accurate value for ΔH_C of ethanol is -1368 kJmol ⁻¹ . State two sour errors for the low figure obtained.	rces of (2 marks)
(d) Draw an energy level diagram for the combustion of ethanol.	(2 marks)
(e) Calculate the heating value of ethanol from the above experiment.	
(e) Calculate the heating value of ethanol from the above experiment. ($C = 12, H = 1, 0 = 16$)	(2 marks)
(f) State one factor that one may consider when choosing kerosene as a filledoret town.	fuel in <i>(1 mark)</i>
	•••••

2. Ammonia can be prepared in the lab by reaction of Calcium ammonium salt.	n hydroxide and an
(a) Write an equation for the reaction that will take place.	(1 mark)
(b) Calculate the volume of ammonia produced at room temper given that 20g of calcium hydroxide reacted fully. ($Ca = 40, H$ $14, MGV = 24dm^3$)	-
(c) (i) Write an equation to show how ammonia is used to mak	
(c) (i) Write an equation to show how ammonia is used to mak fertilizer.	e phosphate (1 mark)
fertilizer.	
(ii) Determine the percentage by mass of Nitrogen in the ab	oove fertilizer.
(N = 14, H = 1, P = 31, O = 16)	(1 mark)
(iii) State the importance of using ammonium phosphate or	ver urea as a fertilizer
	(1 mark)

(d) Describe how the concentrated Sulphu	aric (VI)	acid as	one of	the rea	agents.			(3 n	narks)
(e) State one dangei								•	mark)
		•••••	•••••	•••••					
3. (a) Define solubi	-					astpaper	5.	(1	mark)
					. 60 CO	• • • • • • • • • • • • • • • • • • • •			
(b) The table below s	shows so	olubility	of two	Salts Y		at vary	ing tem	ıperatı	ıres.
Temperature (°C)	10	20	30	40	50	60	70	80	90
Solubility of Y (g/100g water)	70.0	66 .0	63.0	60.0	59.0	56.5	54.5	53	51
Solubility of X (g/100g water)	12,0	18.0	24.0	31.0	38.0	48.0	51.0	74.0	88.0
	e l					<u> </u>			

(3 marks)

(ii)	At what temperature is the solubility of both X and Y the same?	(1 mark)
	Which of the substances X and Y is likely to be a gas? Explain.	(2 marks)
(iv)	What is the mass of Y that would dissolve in 50g of water at 48°C?	
(v)] 	What is the mass of Y that would dissolve in 50g of water at 48°C? Determine the solubility of salt X at 55°C? State one application of solubility.	(2 marks)
(vi)	State <i>one</i> application of solubility.	(1 mark)
••••	ogt the revision	

4. (a) (i) What is meant by isomerism?	(1 mark)
(ii) A hydrocarbon sample is found to contain 83.3% car hydrogen. If the relative molecular mass of the compount molecular formula. ($C = 12, H = 1$)	
	astpapers.com
(iii) Draw the structural formula and name the compound formula is in (a) (ii) above.	nd whose molecular (2 marks)
g) Study the chemical equation below and answer the que	ations that follow
Study the chemical equation below and answer the question CH_3CH_2COOCH + CH_3OH \longrightarrow CH_3CH_2COOCH W	
(i) Name the type of reaction represented by the above e	equation. (1 mark)
(ii) State two conditions in the reaction above.	(2 marks)

	potassium hydroxide solution.	t and (1 mark)
	(iv) Name the type of reaction in b (iii) above.	(1 mark)
	(v) Give three differences between the reactions named in b (i) and b (iv) a	above. (3 <i>marks</i>)
(h)	4 grams of methanol (CH ₃ OH) requires 93.5 kJ of heat to vaporise completely.	cely.
	($C = 12.0, H = 1.0, 0 = 16.0$)	
	5. a) Rubidium, atomic number 37 belongs to the same group as sodium.	
	(i) Explain why the element cannot occur free in nature.	(1 mark)
		•••••

(ii) Suggest how the element would be stored in the laboratory	(1 mark)
(iii) Predict one physical property of Rubidium which is the same as that of transition metals such as iron.	(1 mark)
(iv) State two observations you expect when Rubidium is added to water.	(2 marks)
Mr ito	
(v) What safety measure should be taken when adding Rubidium to water?	(1 mark)
(vi) 43g of Rubidium was added to 1000cm^3 of water, Calculate the volume sulphuric (VI) acid needed to neutralize 25cm^3 of the solution $(Rb = 86, 0 = 16, H = 1, S = 32)$ $2Rb_{(s)} + 2H_2O_{(l)} \longrightarrow 2RbOH_{(aq)} + H_{2(g)}$	

iodine.	hat chlorine is more re	(2 marks)		
(c) Aluminum (Oxide is ampl	noteric and insoluble i	n water	
(i) W	hat do you ur	nderstand by the term	amphoteric oxide?	(1 mark)
			,5.	
	escribe how to		m oxide is amphoteric.	
		o wal	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	
6. (a) Complete	e the table be	low to show the obser	vation made and prope	erty when
concentrated su	ılphuric (VI)a	acid is added to the fol	llowing substances.	(4 marks)
Substance		Observation	Property of Aci	d
sugar	natific (evisio			
Potassium niti	rate			
crystals	05			

(b) Below is a flow chart diagram for the contact process for the manufacture of sulphuric (VI) acid.

(v) State two precautionary measures taken to prevent pollution by the $constant constant constant$	ontact
process	(2 marks)
	•••••
(vi) Write the balanced equations for the reactions in;	(2 marks)
Step 2:	,
	•••••
Step 4:	
(vii) Calculate the volume of sulphur (VI) oxide gas in litres that would	be
required to produce 178kg of Oleum in step 3.	
(Molar gas volume at s.t.p. = $22.4L$, $H = 100 = 16$, $S = 32$)	(3 marks)
(Molar gas volume at s.t. p. = $22.4L$, $H = 3.0 = 16$, $S = 32$)	