KASNEB #### **CIFA PART II SECTION 4** #### PORTFOLIO MANAGEMENT FRIDAY: 27 November 2015. Time Allowed: 3 hours. Answer ALL questions. Marks allocated to each question are shown at the end of the question. Show ALL your workings. **QUESTION ONE** Evaluate the three major steps involved in the portfolio management process. (a) (6 marks) Outline four criteria which could assist a portfolio manager in specifying an asset class. (b) (4 marks) The Joel Hospital has an operating budget of Sh.1.5 billion and has been operating at a budget surplus for the last two (c) years. The hospital has a Sh.2 billion endowment whose sole purpose is to provide capital equipment for the hospital. The endowment's long term expected total return is 8.6% which includes a 3.3% income component. The hospital has no minimum payout requirement and expects no future contributions. Traditionally, the hospital board of directors has determined the annual payout based on current needs. Payouts have been rising steadily to She 37.5 million two years ago and to Sh.140 million last year. The chief finance officer of Joel Hospital has requested for the hospital board's guidance establishing a long term spending for the hospital. He has requested Sh.160 million to buy medical equipment. The inflation rate for the medical equipment price is 4% while the general consumer price index is 2.5%. Required: Discuss the implication of the current pressure on the hospital to increase spending. (i) (3 marks) Explain how Joel Hospital's time horizon would affect its risk tolerance. (ii) (2 marks) Determine a long-term spending policy for Joel Hospital, including a spending rate as a percentage of assets. (iii) (5 marks) Justify the policy. (Total: 20 marks) **QUESTION TWO** Analyse three tools that could be used by a financial analyst when formulating capital market expectations. (6 marks) Highlight four factors that could be used in predicting the beta of a company. (b) (4 marks) The following financial data provides an analyst's expected return on two stocks listed at PASDAQ securities exchange: (c) | Market Return | Aggressive Stock | Defensive Stock | | | | | | |---------------|------------------|-----------------|--|--|--|--|--| | 6% | 2% | 8% | | | | | | | 20% | 30% | 16% | | | | | | Required: The betas (β) of the two stocks. (i) (2 marks) Expected return on each stock if the market return is equally likely to be 6% or 20%. (ii) (2 marks) Determine the Security Market Line (SML) if the risk free rate is 7% and market return is equally likely to be 6% (iii) (2 marks) or 20%. (iv) Calculate the Alphas (α) of the two stocks. (4 marks) (Total: 20 marks) #### **OUESTION THREE** (a) Propose four common errors that might occur in investment management. (4 marks) (b) Esther Simiyu, aged 40 years has a steady job as a manager at a non-governmental organisation. She plans to retire at the age of 55 years. She is a mother of two teenage children and she intends to fund a dedicated trust so as to provide for her children's needs until they reach the age of 25 years. She will need Sh.250,000 within the next few months to fund the trust. Her investment assets are currently valued at Sh.1,600,000. Esther saves Sh.300,000 of her after-tax income every year and plans to continue doing so until retirement. The next contribution will be made in one year. As part of her normal expenses, she annually provides approximately Sh.100,000 of support to a local children charity foundation. When she retires in 15 years time, she plans to purchase a 25 year annuity that would pay Sh.400,000 after-tax annually. She will need Sh.8,500,000 at retirement to fund the annuity. She expects the annual payout to be sufficient to meet all her needs on an inflation adjusted basis. She does not plan to leave any estate at her death. #### Required: - (i) The required annual return that would enable Esther Simiyu to purchase the desired retirement annuity at the age of 55 years. (4 marks) - (ii) "Esther's ability to take risk could be considered above average". Giving three reasons justify this statement. (6 marks) (c) Discuss three merits and three demerits of the application of arbitrage pricing theory (APT) in investment management analysis. (6 marks) (Total: 20 marks) #### **QUESTION FOUR** (a) (i) Define the term "value of risk". (2 marks) (ii) Summarise four limitations of value of risk (VaR). (4 marks) (b) An analyst would like to know the VaR for a portfolio consisting of two asset classes; long term government bonds issued in Kenya and long term government bonds issued in Tanzania. The expected monthly return on Kenyan bonds is 0.85% and the standard deviation is 3.20%. The expected monthly return on Tanzanian bonds (in Kenya Shilling) is 0.95% and the standard deviation is 5.26%. The correlation between the Kenya Shilling return of Tanzania and the Kenyan bond is 0.35. The portfolio market value is Sh.100 million and is equally weighted between the two asset classes. Assume a year has 52 weeks. Required: The 5% weekly VaR using the analytical method. (5 marks) - (c) Discuss the following investor psychology theories: - (i) Prospect theory. (3 marks) (ii) Regret theory. (3 marks) (d) Outline three inputs necessary to aid in deciding whether to add an investment to an existing portfolio. (3 marks) (Total: 20 marks) ### **OUESTION FIVE** - (a) Distinguish between the terms "Sharpe ratio" and "information ratio" as used in active portfolio management. (4 marks) - (b) (i) Explain the term "Fundamental Law of Active Management". (2 marks) - (ii) Patrick Waiharo is evaluating two investment managers: - Manager X He follows 500 shares index with annual forecasts, and the information coefficient for each of the forecasts is 0.03. CF42 Page 2 Out of 3 Manager Y - He follows 100 shares index with annual forecasts, and the information coefficient for each of the forecasts is twice that of Manager X's security forecasts. #### Required: Advise Patrick Waiharo on which manager to select using the Fundamental Law of Active Management. (4 marks) (c) An analyst obtains the following annual rates of returns for a mutual fund: | Year | Return (%) | |------|------------| | 2012 | 14 | | 2013 | -10 | | 2014 | -2 | Required: (i) The fund's holding period return (HPR) over the three-year period. (2 marks) (ii) The fund's annual geometric mean return. (2 marks) (d) A financial analyst has created the following data to illustrate the application of utility theory portfolio selection: | Investment | | Expected Return | Expected Standard Deviation | |------------|---|-----------------|-----------------------------| | | | % | ∞ 0% | | A | | 18 | 2 | | В | | 19 | 8 | | C | • | 20 | 15 | | D | | 18 | 30 | He uses the following utility function: $U = E(r) - \frac{1}{2} A \sigma^2$ Where: U = Expected utility. E(r) = Expected return. A = Measure for risk aversion. σ^2 = Variance of expected return. Required: (i) Advise on which investment a risk-neutral investor should choose. (2 marks) (ii) The investment that the risk-seeking investor should choose if a measure for risk aversion has a value of -2. (2 marks) ` (iii) The investment that the risk-averse investor should choose if a measure for risk aversion has a value of 2. (2 marks) (Total: 20 marks) ## **NORMAL CURVE** AREAS under the STANDARD NORMAL CURVE from 0 to z | Z | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |-----|-------|-------|-------|-------|--------------|--------|-------------|----------|----------------|----------------| | 0.0 | .0000 | .0040 | .0080 | .0120 | .0160 | .0199 | .0239 | .0279 | .0319 | .0359 | | 0.1 | .0398 | .0438 | .0478 | .0517 | .0557 | .0596 | .0636 | .0675 | .0714 | .0754 | | 0.2 | .0793 | .0832 | .0871 | .0910 | .0948 | .0987 | .1026 | .1064 | .1103 | .1141 | | 0.3 | .1179 | .1217 | .1255 | .1293 | .1331 | .1368 | .1406 | .1443 | .1480 | .1517 | | 0.4 | .1554 | .1591 | .1628 | .1664 | .1700 | .1736 | .1772 | .1808 | .1844 | .1879 | | | | | | | | | | | | | | 0.5 | .1915 | .1950 | .1985 | .201 | .2051 | .2088 | .2123 | .2157 | .2190 | .2224 | | 0.6 | .2258 | .2291 | .2324 | .2357 | .2389 | .2422 | .2454 | .2486 | .2518 | .2549 | | 0.7 | .2580 | .2612 | .2642 | .2673 | .2704 | .2734 | .2704 | .2794 | .2823 | .2852 | | 0.8 | .2881 | .2910 | .2939 | .2967 | .2996 | .3023 | .3051 | 3078 | .3106 | 3133 | | 0.9 | .3159 | .3186 | .3212 | .3238 | .3264 | .3289 | .3315 | 3340 | .3365 | .3389 | | | | | | | | | c't Q' | <i>,</i> | | | | 1.0 | .3413 | .3438 | .3461 | .3485 | .3508 | .3531 | .3554 | .3577 | .3599 | .3621 | | 1.1 | .3643 | .3665 | .3686 | .3708 | .3729 | .3749 | 3770 | .3790 | .3810 | 3830 | | 1.2 | .3849 | .3869 | .3888 | .3907 | .3925 | .3944 | .3962 | .3980 | .3997 | .4015 | | 1.3 | .4032 | .4049 | .4066 | .4082 | .4099 | .41.25 | .4131 | .4147 | .4162 | .4177 | | 1.4 | .4192 | .4207 | .4222 | .4236 | .4251 | 4265 | .4279 | .4292 | .4306 | .4319 | | | | | | | | N | | | | | | 1.5 | .4332 | .4345 | .4357 | .4370 | .4382 | .4394 | .4406 | .4418 | .4429 | .4441 | | 1.6 | .4452 | .4463 | .4474 | .4484 | .4495 | .4505 | .4515 | .4525 | .4535 | .4545 | | 1.7 | .4554 | .4564 | .4573 | .4582 | 45 91 | .4599 | .4608 | .4616 | .4625 | .4633 | | 1.8 | .4641 | .4649 | .4656 | .4664 | .4671 | .4678 | .4686 | .4693 | .4699 | .4706 | | 1.9 | .4713 | .4719 | .4726 | .4732 | .4738 | .4744 | .4750 | .4756 | .4761 | .4767 | | 2.0 | .4772 | .4778 | .4783 | .4788 | .4793 | .4798 | .4803 | .4808 | 4040 | 4047 | | 2.1 | .4821 | .4826 | .4830 | .4834 | .4733 | .47 50 | .4846 | .4850 | .4812
.4854 | .4817
.4857 | | 2.2 | .4861 | .4864 | 4868 | .4871 | .4875 | .4878 | .4881 | .4884 | .4887 | .4890 | | 2.3 | .4893 | .4896 | 4898 | .4901 | .4904 | .4906 | .4909 | .4911 | .4867
.4913 | .4916 | | 2.4 | .4918 | .4920 | .4922 | .4925 | .4927 | .4929 | .4931 | .4932 | .4934 | .4916 | | 2.4 | .4310 | 655 | .4322 | .7520 | .4321 | .4323 | .4301 | .4332 | .4504 | .4330 | | 2.5 | .4938 | 4940 | .4941 | .4943 | .4945 | .4946 | .4948 | .4949 | .4951 | .4952 | | 2.6 | .4953 | .4955 | .4956 | .4957 | .4959 | .4960 | .4961 | .4962 | .4963 | .4964 | | 2.7 | .4965 | .4966 | .4967 | .4968 | .4969 | .4970 | .4971 | .4972 | .4973 | .4974 | | 2.8 | .4974 | .4975 | .4976 | .4977 | .4977 | .4978 | .4979 | .4979 | .4980 | .4981 | | 2.9 | .4981 | .4982 | .4982 | .4983 | .4984 | .4984 | .4985 | .4985 | .4986 | 4986 | | | | | | | | | | | | | | 3.0 | .4987 | .4987 | .4987 | .4988 | .4988 | .4989 | .4989 | .4989 | .4990 | .4990 | | 3.1 | .4990 | .4991 | .4991 | .4991 | .4992 | 4992 | .4992 | .4992 | .4993 | .4993 | | 3.2 | .4993 | .4993 | .4994 | .4994 | .4994 | .4994 | .4994 | .4995 | .4995 | .4995 | | 3.3 | .4995 | .4995 | .4995 | .4996 | .4996 | .4996 | .4996 | .4996 | .4996 | .4997 | | 3.4 | .4997 | .4997 | .4997 | .4997 | .4997 | .4997 | .4997 | .4997 | .4997 | .4998 | | | | | | | | | | | | | | 3.5 | .4998 | .4998 | .4998 | .4998 | .4998 | .4998 | .4998 | .4998 | .4998 | .4998 | | 3.6 | .4998 | .4998 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | | 3.7 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | | 3.8 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | .4999 | | 3.9 | .5000 | .5000 | .5000 | .5000 | .5000 | .5000 | .5000 | .5000 | .5000 | .5000 | Present Value of 1 Received at the End of *n* Periods: $PVIF_{r,n} = 1/(1+r)^n = (1+r)^{-n}$ | eriod | 1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% | 14% | 15% | 16% | 18% | 20% | 24% | 28% | 32% | 36% | |-------| | 1 | .9901 | .9804 | .9709 | .9615 | .9524 | .9434 | .9346 | .9259 | .9174 | .9091 | .8929 | .8772 | .8696 | .8621 | .8475 | .8333 | .8065 | .7813 | .7576 | .7353 | | 2 | .9803 | .9612 | .9426 | .9246 | .9070 | .8900 | .8734 | .8573 | .8417 | .8264 | .7972 | .7695 | .7561 | .7432 | .7182 | .6944 | .6504 | .6104 | 5739 | .5407 | | 3 | .9706 | .9423 | .9151 | .8890 | .8638 | .8396 | .6163 | .7938 | .7722 | .7513 | .7118 | .6750 | .6575 | .6407 | .6086 | .5787 | .5245 | .4768 | 4348 | .3975 | | 4 | .9610 | .9238 | .8885 | .8548 | .8227 | .7921 | .7629 | .7350 | .7084 | .6830 | .6355 | .5921 | .5718 | .5523 | .5158 | .4823 | .4230 | .3725 | .3294 | .2923 | | 5 | .9515 | .9057 | .8626 | .8219 | .7835 | .7473 | .7130 | .6806 | .6499 | .6209 | 5674 | .5194 | .4972 | .4761 | .4371 | .4019 | .3411 | 2910 | 2495 | .2149 | | 6 | .9420 | .8880 | .8375 | .7903 | .7462 | .7050 | .6663 | .6302 | .5963 | .5645 | .5066 | .4556 | .4323 | .4104 | .3704 | .3349 | .2751 | .2274 | .1890 | .1580 | | 7 | .9327 | .8706 | .8131 | .7599 | .7107 | .6651 | .6227 | .5835 | .5470 | .5132 | .4523 | .3996 | .3759 | .3538 | .3139 | .2791 | .2218 | :1776 | 1432 | .1162 | | 8 | .9235 | .8535 | .7894 | .7307 | .6768 | .6274 | .5820 | .5403 | .5019 | .4665 | .4039 | .3506 | .3269 | .3050 | .2660 | .2326 | .1789 | .1388 | .1085 | .0854 | | 9 | .9143 | .8368 | .7664 | .7026 | .6446 | .5919 | .5439 | .5002 | .4604 | .4241 | .3606 | .3075 | .2843 | .2630 | .2255 | .1938 | .1443 | .1084 | .0822 | .0628 | | 10 | .9053 | .8203 | .7441 | .6756 | .6139 | .5584 | .5083 | .4632 | .4224 | .3855 | .3220 | .2697 | .2472 | .2267 | .1911 | .1615 | .1164 | .0847 | .0623 | .0462 | | 11 | .8963 | .8043 | .7224 | .6496 | .5847 | .5268 | .4751 | .4289 | .3875 | .3505 | .2875 | .2366 | .2149 | .1954 | .1619 | .1346 | .0938 | .0662 | .0472 | .0340 | | 12 | .8874 | .7885 | .7014 | .6246 | .5568 | .4970 | .4440 | .3971 | .3555 | .3186 | .2567 | .2076 | .1869 | 1685 | .1372 | .1122 | .0757 | .0517 | .0357 | .0250 | | 13 | .8787 | .7730 | .6810 | .6006 | .5303 | .4688 | .4150 | .3677 | .3262 | .2897 | .2292 | .1821 | .1625 | .1452 | .1163 | .0935 | .0610 | .0404 | .0271 | .0184 | | 14 | .8700 | .7579 | .6611 | .5775 | .5051 | .4423 | .3878 | .3405 | .2992 | .2633 | .2046 | .1597 | .1413 | .1252 | .0985 | .0779 | .0492 | .0316 | .0205 | .0135 | | 15 | .8613 | .7430 | .6419 | .5553 | .4810 | .4173 | .3624 | 3152 | .2745 | .2394 | .1827 | 1401 | .1229 | .1079 | .0835 | .0649 | .0397 | .0247 | .0155 | .0099 | | 16 | .8528 | .7284 | .6232 | .5339 | .4581 | .3936 | .3387 | .2919 | .2519 | .2176 | .1631 | .1229 | .1069 | .0930 | .0708 | .0541 | .0320 | .0193 | .0118 | .0073 | | 17 | .8444 | .7142 | .6050 | .5134 | .4363 | .3714 | .3166 | .2703 | .2311 | .1978 | .1456 | .1078 | .0929 | .0802 | .0600 | .0451 | .0258 | .0150 | .0089 | .0054 | | 18 | .8360 | .7002 | .5874 | .4936 | .4155 | .3503 | .2959 | .2502 | .2120 | .1799 | .1300 | .0946 | .0808 | .0691 | .0508 | .0376 | 0208 | .0118 | .0068 | .0039 | | 19 | .8277 | .6864 | .5703 | .4746 | .3957 | .3305 | .2765 | .2317 | .1945 | .1635 | .1161 | .0829 | .0703 | .0596 | .0431 | .0313 | 0168 | .0092 | .0051 | .0029 | | 20 | .8195 | .6730 | .5537 | .4564 | .3769 | .3118 | .2584 | .2145 | .1784 | .1486 | 1037 | .0728 | .0611 | .0514 | .0365 | .026 | 0135 | .0072 | .0039 | .0021 | | 25 | .7798 | .6095 | .4776 | .3751 | .2953 | .2330 | .1842 | .1460 | .1160 | .0923 | .0588 | .0378 | .0304 | .0245 | .0160 | 0.105 | .0046 | .0021 | .0010 | .0005 | | 30 | .7419 | .5521 | .4120 | .3083 | .2314 | .1741 | .1314 | .0994 | .0754 | .0573 | .0334 | .0196 | .0151 | .0116 | .0070 | .0042 | .0016 | .0006 | .0002 | .0001 | | 40 | .6717 | .4529 | .3066 | .2083 | .1420 | .0972 | .0668 | .0460 | .0318 | .0221 | .0107 | .0053 | .0037 | .0026 | .0013 | .0007 | .0002 | .0001 | | | | 50 | .6080 | .3715 | .2281 | .1407 | .0872 | .0543 | .0339 | .0213 | .0134 | .0085 | .0035 | .0014 | .0009 | .0006 | .0503 | .0001 | | | | • | | 60 | .5504 | .3048 | .1697 | .0951 | .0535 | .0303 | .0173 | .0099 | .0057 | .0033 | .0011 | .0004 | .0002 | .0000 | O - | • | | | | | ^{*} The factor is zero to four decimal places Present Value of an Annuity of 1 Per Period form Periods: PVIF_{rt} = $$\sum_{i=1}^{n} \frac{1}{(1+r)^{i}} = \frac{1-\frac{1}{(1+r)^{n}}}{r}$$ | TRUMBET S | | | | | | | | | (S) | | | | | | | | | | | |----------------|---------|---------|---------|---------|---------|---------|---------|----------|---------|--------|--------|--------|--------|--------|--------|--------|-----------|-----------|--------| | payments | 1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% | 9% | 10% | 12% | 14% | 15% | 16% | 18% | 20% | 24% | 28% | 32% | | 1 | 0.9901 | 0.9804 | 0.9709 | 0.9615 | 0.9524 | 0.9434 | 0.9346 | 0.9259 | 0.9174 | 0.9091 | 0.8929 | 0.8772 | 0.8696 | 0.8621 | | | | | | | 2 | 1.9704 | 1.9416 | 1.9135 | 1.8861 | 1.8594 | 1.8334 | | 7.7833 | | 1.7355 | | 1.6467 | 1.6257 | | 0.8475 | 0.8333 | 0.8065 | 0.7813 | 0.7576 | | 3 | 2.9410 | 2.8839 | 2.8286 | 2.7751 | 2.7232 | | | 2.5771 | | 2.4869 | 2.4018 | | 2.2832 | 1.6052 | 1.5656 | 1.5278 | 1.4568 | 1.3916 | 1.3315 | | 4 | 3.9020 | 3.8077 | 3.7171 | 3.6299 | | | - 77. | 3.3121 | | | | | | 2.2459 | 2.1743 | 2.1065 | 1.9813 | 1.8684 | 1.7663 | | 5 | 4.8534 | 4.7135 | 4.5797 | 4.4518 | | 4.2124 | | | | | | | | 2.7982 | 2.6901 | 2.5887 | 2.4043 | 2.2410 | 2.0957 | | · / | | | | | | ~ | 5.1002 | 3.3321 | 3.0031 | 3.7306 | 3.6048 | 3.4331 | 3.3522 | 3.2743 | 3.1272 | 2.9906 | 2.7454 | 2.5320 | 2.3452 | | ` 6 | 5.7955 | 5.6014 | 5.4172 | 5.2421 | 5.0757 | 4.9173 | 4.7665 | 4.6229 | 4.4859 | 4 3553 | 4.1114 | 3 8887 | 3.7845 | 3.6847 | 3.4976 | 2 4055 | | | | | 7 | 6.7282 | 6.4720 | 6.2303 | 6.0021 | 5.7864 | £5824 | 5.3893 | | | 4.8684 | 4.5638 | 4.2883 | 4.1604 | | | | 3.0205 | 2.7594 | 2.5342 | | 8 | 7.6517 | 7.3255 | 7.0197 | 6.7327 | | 6.2098 | 5.9713 | | | 5.3349 | 4.9676 | 4.6389 | | 4.0386 | 3.8115 | 3.6046 | 3.2423 | 2.9370 | 2.6775 | | 9 | 8.5660 | 8.1622 | | 7.4353 | (-2 | _ | 6.5152 | | | 5.7590 | | 4.9464 | 4.4873 | 4.3436 | 4.0776 | 3.8372 | 3.4212 | 3.0758 | 2.7860 | | 10 | 9.4713 | 8.9826 | | | | | | | 6.4177 | | | | 4.7716 | 4.6065 | 4.3030 | 4.0310 | 3.5655 | 3.1842 | 2.8681 | | | | | | 2,1100 | | 1.5001 | 1.0230 | 6.7101 | 6.4177 | 6.1446 | 5.6502 | 5.2161 | 5.0188 | 4.8332 | 4.4941 | 4.1925 | 3.6819 | 3.2689 | 2.9304 | | 11 | 10.3676 | 9.7868 | 9.2526 | 8.7605 | 8.3064 | 7.8869 | 7.4987 | 7.1390 | 6.8052 | 6.4951 | 5 9377 | 5.4527 | 5.2337 | 5.0286 | 4.6560 | | | | | | 12 | 11.2551 | 10.5753 | 9.9540 | 9.3851 | 8.8633 | 8.3838 | 7.9427 | | 7.1607 | 6.8137 | | 5.6603 | 5.4206 | | | 4.3271 | 3.7757 | 3.3351 | 2.9776 | | 13 | 12.1337 | 11.3484 | 10.6350 | 9.9856 | 9.3936 | 8.8527 | 8.3577 | | 7.4869 | 7.1034 | 6.4235 | 5.8424 | | 5.1971 | 4.7932 | 4.4392 | 3.8514 | 3.3868 | 3.0133 | | 14 | 13.0037 | 12.1062 | 11.2961 | 10.5631 | 9.8986 | 9.2950 | 8.7455 | 8.2442 | | 7.3667 | 6.6282 | | 5.5831 | 5.3423 | 4.9095 | 4.5327 | 3.9124 | 3.4272 | 3.0404 | | 15 | | 12.8493 | | | | | | | 8.0607 | | | 6.0021 | 5.7245 | 5.4675 | 5.0081 | 4.6106 | 3.9616 | 3.4587 | 3.0609 | | | | | | | | 5.7122 | 3.1073 | 6.3393 | 0.0007 | 7.6061 | 6.8109 | 6.1422 | 5.8474 | 5.5755 | 5.0916 | 4.6755 | 4.0013 | 3.4834 | 3.0764 | | 16 | 14.7179 | 13.5777 | 12.5611 | 11.6523 | 10.8378 | 10.1059 | 9.4466 | 8.8514 | 8 3126 | 7.8237 | 6 9740 | 6.2651 | 5.9542 | 5.6685 | = 4004 | 4 2000 | | | | | 17 | 15.5623 | 14.2919 | 13.1661 | 12.1657 | 11.2741 | 10.4773 | 9.7632 | | 8.5436 | 8.0216 | 7.1196 | 6.3729 | 6.0472 | 5.7487 | 5.1624 | 4.7296 | 4.0333 | 3.5026 | 3.0882 | | 18 | | 14.9920 | | | | | | | 8.7556 | 8.2014 | 7.2497 | 6.4674 | | | 5.2223 | 4.7746 | 4.0591 | 3.5177 | 3.0971 | | 19 | 17.2260 | 15.6785 | 14.3238 | 13.1339 | 12.0853 | 11.1581 | 10 3356 | 9 6036 | 8.9501 | 8.3649 | 7.3658 | 6.5504 | 6.1280 | 5.8178 | 5.2732 | 4.8122 | 4.0799 | 3.5294 | 3.1039 | | 20 | 18.0456 | 16.3514 | 14.8775 | 13.5903 | 12 4622 | 11 4699 | 10.5940 | 9.0030 | 0.5501 | | | | 6.1982 | 5.8775 | 5.3162 | 4.8435 | 4.0967 | 3.5386 | 3.1090 | | | | | | | | | 10.0540 | 3.0101 | 3.1203 | 0.3136 | 7.4694 | 6.6231 | 6.2593 | 5.9288 | 5.3527 | 4.8696 | 4.1103 | 3.5458 | 3.1129 | | 25 | 22.0232 | 19.5235 | 17.4131 | 15.6221 | 14.0939 | 12.7834 | 11.6536 | 10.6748 | 9.8226 | 9.0770 | 7.8431 | 6 8729 | 6.4641 | 6.0971 | 5.4669 | 4.9476 | 4 4 4 7 4 | 2 5 2 4 2 | | | 30 | 25.8077 | 22.3965 | 19.6004 | 17.2920 | 15.3725 | 13.7648 | 12.4090 | 11.2578 | 10.2737 | 9 4269 | 8 0552 | 7.0027 | 6.5660 | 6.1772 | 5.5168 | | | 3.5640 | | | 40 | 32.8347 | 27.3555 | 23.1148 | 19.7928 | 17,1591 | 15.0463 | 13.3317 | 11.9246 | 10.7574 | 9 7791 | 8.2438 | 7.1050 | 6.6418 | 6.2335 | | 4.9789 | 4.1601 | 3.5693 | | | 50 | 39.1961 | 31.4236 | 25.7298 | 21.4822 | 18.2559 | 15.7619 | 13,8007 | 12.2335 | 10.9617 | 9 9144 | 8.3045 | 7.1327 | 6.6605 | 6.2463 | 5.5482 | 4.9966 | 4.1659 | | 3.1250 | | 60 | 44.9550 | 34.7609 | 27.6756 | 22.6235 | 18.9293 | 16.1614 | 14.0397 | 12 3766 | 11 0480 | 9.9672 | B 3240 | 7.1327 | | | 5.5541 | 4.9995 | 4.1666 | | 3.1250 | | | | | | | | | | . 2.3,00 | | 3.5012 | C.3240 | 7.1401 | 6.6651 | 6.2402 | 5.5553 | 4.9999 | 4.1667 | 3.5714 | 3.1250 |