KASNEB

CIFA PART III SECTION 6

INTERNATIONAL FINANCE

FRIDAY: 27 November 2015. Time Allowed: 3 hours. Answer ALL questions. Marks allocated to each question are shown at the end of the question. Show ALL your workings. **QUESTION ONE** Explain three major functions of the foreign exchange market, citing relevant players in each case. (a) (6 marks) (b) In relation to purchasing power parity (PPP), discuss the following terms: (i) The law of one price. (2 marks) (ii) Absolute purchasing power parity. (3 marks) (iii) Relative purchasing power parity. (3 marks) (c) You are provided with the following market conditions: Annual interest rate in Japan: 1.0% per annum. Annual interest rate in Germany: 6.0% per annum. Current spot exchange rate: Japanese Yen (¥)114.4733/Euro (€). One-year forward exchange rate: ¥110.2423/€ An arbitrager borrows ¥100,000,000 or its equivalent € amount. Required: Determine whether interest rate parity (IRP) is holding (Ignore transaction costs). (i) (2 marks) (ii) Determine the arbitrage profit. (4 marks) (Total: 20 marks) ION TWO
Explain the following exchange rate regimes based on international monetary fund (IMF) classification: **OUESTION TWO** (a) (i) Fixed or pegged exchange rate system. (1 mark) (ii) Free floating or flexible exchange rate system. (1 mark) (iii) Managed floating exchange rate system. (1 mark) (b) Evaluate two advantages and two disadvantages of a free floating exchange rate system. (4 marks) (c) Summarise three benefits of regulating bank capital. (3 marks)

- (d) Philip Woods, a resident of United States of America who is a venture capitalist holds a major stake in a motor vehicle manufacturing plant in London, Britain. He is concerned with the Pound value of his British equity position and has provided you with the following scenarios:
 - 1. If the British economy booms in the future, his stake would be worth 980,000 Sterling Pounds (£) and the exchange rate would be United States Dollars (\$)1.40/£.
 - 2. If the British economy experiences a recession, his equity would be worth £1,000,000 and the exchange rate would be \$1.50/£.
 - If the British economy stagnates, his equity would be worth £1,070,000 and the exchange rate would be \$1.60/£.
 - 4. The probability that the British economy would experience either of the above possible states would be a third $\binom{1}{3}$ for each state.

CF62 Page 1 Out of 3

Required:

(i) Estimate Philip Woods' exposure to the exchange rate risk.

(6 marks)

(ii) Outline four strategies that Philip Woods could use to manage the operating exposure experienced in (d) (i) above. (4 marks)

(Total: 20 marks)

QUESTION THREE

(a) International trade has expanded substantially in the last few decades. However, this has led to greater uncertainty for multinational companies.

Required:

Discuss three ways in which increased globalisation could adversely affect multinational firms.

(6 marks)

(b) (i) Explain the term "balance of payment".

(2 marks)

(ii) Analyse four factors that affect a country's financial account.

(8 marks)

(c) The government of country M is willing to provide a loan of Sh.10 million at an interest rate of 5% per annum to a multinational corporation (MNC) to build a factory in country M. The loan would be paid off in equal annual instalments over a 5-year period. The market interest rate for such an investment is 14% per annum.

Required:

Before tax value of the interest subsidy.

(4 marks)

(Total: 20 marks)

QUESTION FOUR

(a) The following information relates to Apex Forwarders Limited, a multinational corporation based in Switzerland:

- 1. The company is considering a project which involves establishing a 2-year venture in Malaysia with an initial investment of 60 million Swiss Francs (CHF).
- 2. The company's weighted average cost of capital (WACC) is 10%.
- 3. The required rate of return on this project is 12%.
- 4. The project is expected to generate cash flows of 24 million Malaysian Renggit (MYR) at the end of year one and 60 million MYR at the end of year owo, excluding the salvage value.
- 5. The exchange rate is expected to be stable at 1.35 MYR/CHF.
- 6. All cash flows are remitted to the parent company.

Required:

(i) The break-even salvage value.

(4 marks)

(ii) Advise the management on whether to undertake the project.

(1 mark)

- (b) Discuss three mechanisms that could be used by a multinational corporation in its attempt to repatriate blocked funds from a host country. (6 marks)
- (c) Examine five objectives of international cash management.

(5 marks)

(d) Suggest four basic drivers of cross-border mergers.

(4 marks)

(Total: 20 marks)

QUESTION FIVE

(a) (i) Evaluate five strategic objectives of international transfer pricing.

(5 marks)

(ii) A multinational organisation, Demers Ltd. has two divisions, Division A and Division B, each based in a different country. Division A produces a product called "Malewa" and transfers it to Division B which operates in another country.

The domestic tax-rates for Division A and Division B are 40% and 50% respectively.

CF62 Page 2 Out of 3 25% import duty on the price of product "Malewa" is also assessed. The full cost per unit of "Malewa" is Sh.190 while the variable cost is Sh.60.

Required:

Advise the management of Demers Ltd. on whether to use variable cost or full cost transfer price.

(5 marks)

(b) Assess five functions of United Nations Conference on Trade and Development (UNCTAD).

(5 marks)

(c) Faremall Group Limited. a multinational company with its head office in Kenya is considering issuing a dual-currency international bond.

The following information relates to the bond:

- 1. The par-value of the bond is Kenya Shillings (KES) 20 billion.
- 2. The tenor of the bond is 10 years with an annual coupon payment of 8%, payable in KES.
- 3. The bond will be redeemed in United States Dollars (USD) for a total of USD 191,764,850.30.
- 4. The current spot exchange rate is KES 104.2944 per USD.
- 5. The KES yield curve is flat at 4% and the USD curve is flat at 12%.

Req	uired	l:
-----	-------	----

(i) The theoretical value of the dual-currency bond.

(3 marks)

(2 marks)

(Total: 20 marks)

Present Value of 1 Received at the End of n Periods:

$PVIF_{cn} = 1/($	$1+r)^n=($	[1+r]-"
-------------------	------------	---------

				,																
Period	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	32%	36%
1	.9901	.9804	.9709	.9615	.9524	.9434	.9346	9259	.9174	.9091	.8929	.8772	.8696	.8621	.8475	.8333	.8065	.7813	.7576	.7353
2	.9803	.9612	.9426	.9246	.9070	.8900	8734	.8573	.8417	.8264	.7972	.7695	.7561	.7432	.7182	.6944	.6504	.6104	.5739	.5407
3	.9706	.9423	.9151	.8890	.8638	.8396	.8163	.7938	.7722	.7513	.7118	.6750	.6575	.6407	.6086	.5787	.5245	.4768	.4348	.3975
4	.9610	.9238	.8885	.8548	.8227	.7921	.7629	.7350	.7084	.6830	.6355	.5921	.5718	.5523	.5158	.4823	.4230	.3725	.3294	.2923
5	.9515	.9057	.8626	.8219	.7835	.7473	.7130	.6806	.6499	.6209	.5674	.5194	.4972	.4761	.4371	.4019	.3411	.2910	.2495	.2149
6	.9420	.8880	.8375	.7903	.7462	.7050	.6663	.6302	.5963	.5645	.5066	.4556	.4323	.4104	.3704	.3349	.2751	.2274	.1890	.1580
7	.9327	.8706	.8131	.7599	.7107	.6651	.6227	.5835	.5470	.5132	.4523	.3996	.3759	.3538	.3139	.2791	.2218	.1776	.1432	.1162
8	.9235	.8535	.7894	.7307	.6768	.6274	.5820	.5403	.5019	.4665	.4039	.3506	.3269	.3050	.2660	.2326	.1789	.1388	.1085	.0854
9	.9143	.8368	.7664	.7026	.6446	.5919	.5439	.5002	.4604	.4241	.3606	.3075	.2843	.2630	.2255	.1938	.1443	.1084	.0822	.0628
10	.9053	.8203	.7441	.6756	.6139	.5584	.5083	.4632	.4224	.3855	.3220	.2697	.2472	.2267	.1911	.1615	.1164	.0847	.0623	.0462
, 11	8963	.8043	.7224	.6496	.5847	.5268	.4751	.4289	.3875	.3505	.2875	2366	.2149	.1954	.1619	.1346	.0938	.0662	.0472	.0340
12	.8874	.7885	.7014	.6246	.5568	.4970	.4440	.3971	3555	.3186	.2567	.2076	.1869	1685	.1372	.1122	.0757	.0517	.0357	.0250
13	.8787	.7730	.6810	.6006	.5303	.4688	.4150	.3677	.3262	.2897	.2292	.1821	.1625	.1452	.1163	.0935	.0610	.0404	.0271	.0184
14	.8700	.7579	.6611	.5775	.5051	.4423	.3878	.3405	.2992	.2633	.2046	.1597	.1413	.1252	.0985	.0779	.0492	.0316	.0205	.0135
15	.8613	.7430	.6419	.5553	.4810	.4173	.3624	.3152	.2745	.2394	.1827	.1401	.1229	.1079	.0835	.0649	.0397	.0247	.0155	.0099
16	.8528	.7284	.6232	.5339	.4581	.3936	.3387	.2919	.2519	.2176	.1631	.1229	.1069	.0930	.0708	.0541	.0320	.0193	.0118	.0073
.17	.8444	.7142	.6050	.5134	.4363	.3714	.3166	.2703	.2311	.1978	.1456	.1078	.0929	.0802	.0600	.0451	.0258	.0150	.0089	.0054
18	.8360	.7002	.5874	.4936	.4155	.3503	.2959	.2502	.2120	.1799	.1300	.0946	.0808	.0691	.0508	.0376	.0268	.0118	.0068	.0039
19	.8277	.6864	.5703	.4746	.3957	.3305	.2765	.2317	.1945	.1635	.1161	.0829	.0703	.0596	.0431	.0313	9) 68	.0092	.0051	.0029
20	.8195	.6730	.5537	.4564	.3769	.3118	.2584	.2145	.1784	.1486	1037	.0728	.0611	.0514	.0365		U135	.0072	.0039	.0021
25	.7798	.6095	.4776	.3751	.2953	.2330	.1842	.1460	.1160	.0923	.0588	.0378	.0304	.0245	.0160	0305	.0046	.0021	.0010	.0005
30	.7419	.5521	.4120	.3083	.2314	.1741	.1314	.0994	.0754	.0573	.0334	.0196	.0151	.0116	.0070	0042	.0016	.0006	.0002	.0001
40	.6717	4529	.3066	.2083	.1420	.0972	.0668	.0460	.0318	.0221	.0107	.0053	.0037	.0026	.0013	.0007	.0002	.0001		
50	.6080	.3715	.2281	.1407	.0872	.0543	.0339	.0213	.0134	.0085	.0035	.0014	.0009	.0006	0003	.0001				
60	.5504	.3048	.1697	.0951	.0535	.0303	.0173	.0099	.0057	.0033	.0011	.0004	.0002	.0001	D.	•				
														-c						

^{*} The factor is zero to four decimal places

Present Value of an Annuity of 1 Per Period form Periods:

$$PVIF_{rt} = \sum_{l=1}^{n} \frac{1}{(l+r)^{l}} = \frac{1 - \frac{1}{(l+r)^{l}}}{r}$$

									-00										
payments	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%	12%	14%	15%	16%	18%	20%	24%	28%	334/
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346		0.9174	0.9091	0.8929	0.8772	0.8696						32%
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334		9.7833	1.7591		1.6901	1.6467	1.6257	0.8621	0.8475	0.8333	0.8065	0.7813	0.7576
3	2.9410	2.8839	2.8286	2.7751	2.7232	2.6730		2.5771	2.5313		2.4018	2.3216	2.2832	1.6052	1.5656	1.5278	1.4568	1.3916	1.3315
4	3.9020	3.8077	3.7171	3.6299	3,5460	3.4651	3.3872		3.2397		3.0373	2.9137	2.8550	2.2459	2.1743	2.1065	1.9813	1.8684	1.7663
5	4.8534	4.7135	4.5797	4.4518	4.3295		4,1002				3.6048	3.4331	3.3522	2.7982	2.6901	2.5887	2.4043	2.2410	2.0957
						7.4	0.1102	0.0021	0.0001	0.7500	3.0040	3.4331	3.3322	3.2743	3.12/2	2.9906	2.7454	2.5320	2.3452
6	5.7955	5.6014	5.4172	5.2421	5.0757	4.5373	4.7665	4.6229	4.4859	4.3553	4.1114	3.8887	3.7845	3.6847	2 4070	1 2055			
7	6.7282	6.4720	6.2303	6.0021	5.7864	53824	5,3893	5.2064	5.0330	4.8684	4.5638	4.2883	4.1604	4.0386	3.4976 3.8115		3.0205	2.7594	2.5342
8	7.6517	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713			5.3349	4.9676	4.6389	4.4873	4.3436	4.0776	3.6046	3.2423	2.9370	2.6775
9	8.5660	8.1622	7.7861	7.4353		6.8017	6.5152		5.9952		5.3282	4.9464	4.7716	4.6065		3.8372	3.4212	3.0758	2.7860
10	9.4713	8.9826	8.5302	8.1109	1/7	7.3601	7.0236				5.6502	5.2161		4.8332	4.3030	4.0310	3.5655	3.1842	2.8681
									0.4111	0.1440	0.0002	5.2161	3.0100	4.0332	4.4941	4.1925	3.6819	3.2689	2.9304
11	10.3676	9.7868	9.2526	8.7605	8.3064	7.8869	7.4987	7.1390	6.8052	6.4951	5.9377	5.4527	5.2337	5.0286	4 6560	4 2074			
12	11.2551	10.5753	9.9540	9.3851	8.8633	8.3838	7.9427	7.5361	7.1607	6.8137	6.1944	5.6603	5.4206	5.1971	4.6560 4.7932	4.3271	3.7757	3.3351	2.9776
13	12.1337	11.3484	10.6350	9.9856	9.3936	8.8527	8.3577	7.9038	7.4869	7.1034	6.4235	5.8424	5.5831	5.3423		4.4392	3.8514	3.3868	3.0133
14	13.0037	12.1062	11.2961	10.5631	9.8986	9.2950	8.7455		7.7862	7.3667	6.6282	6.0021	5.7245		4.9095	4.5327	3.9124	3.4272	3.0404
15	13.8651	12.8493	11.9379	11.1184	10.3797					7.6061		6.1422	5.8474	5.4675	5.0081	4.6106	3.9616	3.4587	3.0609
								0.0000	0.0001	7.0001	0.0103	0.1422	3.0474	5.5755	5.0916	4.6755	4.0013	3.4834	3.0764
16	14.7179	13.5777	12.5611	11.6523	10.8378	10.1059	9.4466	8 8514	R 3126	7.8237	6.9740	6.2651	5.9542	5.6685					
17	15.5623	14.2919	13.1661	12.1657	11.2741	10,4773	9.7632	9.1216	8.5436		7.1196	6.3729	6.0472	5.7487	5.1624	4.7296	4.0333	3.5026	3.0882
					11.6896				8.7556	8.2014	7.2497	6.4674	6.1280		5.2223	4.7746	4.0591	3.5177	3.0971
					12.0853				8.9501	8.3649	7.3658	6.5504	6.1280	5.8178	5.2732	4.8122	4.0799	3.5294	3.1039
					12.4622						7.4694	6.6231	6.2593	5.8775	5.3162	4.8435	4.0967	3.5386	3.1090
								3.0101	3.1203	0.5136	1.4054	0.0231	6.2393	5.9288	5.3527	4.8696	4.1103	3.5458	3.1129
25	22.0232	19.5235	17.4131	15.6221	14.0939	12:7834	11,6536	10.6748	9.8226	9 0770	7.8431	6.8729	6.4641	6.0971	5 4CC0	4 0 4 7 0	4 4 4 7 4	2 5042	
30	25.8077	22.3965	19.6004	17.2920	15.3725	13.7648	12,4090	11.2578	10.2737	9.4269	8.0552	7.0027	6.5660	6.1772	5.4669	4.9476		3.5640	3.1220
40	32.8347	27.3555	23.1148	19.7928	17.1591	15.0463	13.3317	11.9246	10.7574	9 7791	8.2438	7.1050	6,6418	6.2335	5.5168	4.9789	4.1601	3.5693	3.1242
50	39.1961	31.4236	25.7298	21.4822	18.2559	15.7619	13.8007	12.2335	10.9617	9.9148	8.3045	7.1030	6.6605	6.2463	5.5482	4.9966	4.1659	3.5712	3.1250
60	44.9550	34.7609	27.6756	22.6235	18.9293	16.1614	14.0392	12 3766	11.0480	9 9672	8.3240	7.1401	6.6651	6.2402	5.5541	4.9995	4.1666	3.5714	3.1250
									5400	9.5012	C.0240	7.7401	0.0031	0.2402	5.5553	4.9999	4.1667	3.5714	3.1250