DICT LEVEL I ## COMPUTER MATHEMATICS Time Allowed: 3 hours. MONDAY: 21 May 2018. Answer ALL questions. Marks allocated to each question are shown at the end of the question. Show ALL your workings. **QUESTION ONE** Convert the following numbers to their respective equivalents: (a) 23724₁₀ to binary form. (1 mark) 7189_{10} to base 16. (1 mark) (ii) (2 marks) (iii) 275.B02₁₆ to base 10. (2 marks) (iv) 10 0001 1011 1011 0110 01012 to hexadecimal form. (2 marks) BADCODE₁₆ to binary form. (v) Add the following octal digits: (b) (1 mark) (i) 4 + 3. (1 mark) (ii) 3 + 6. (2 marks) (iii) $45376_8 + 36274_8$. (c) Evaluate the following using complements: (3 marks) A57913₁₆ - 64EE00₁₆ (d) Perform the following binary arithmetic operations: (i) 110.1101 + 1011.101.(1 mark) 10101010 - 110016 (1 mark) (ii) $1011 \div 11.$ (2 marks) (iii) Determine the nine's and ten's complements of the following decimal number: (e) (1 mark) 78923019. (Total: 20 marks) **QUESTION TWO** Find the radix-minus-one (15's) complement and the (16's) complement of: (a) 5D309₁₆. (2 marks) (b) Decode each numeric, encoded in the 5-4-2-1 BCD codes below: (i) 1010 0010 1001. (1 mark) (ii) 1011 0001 0100 1100. (1 mark) > TD12 Page 1 Out of 3 - (c) Find the two's complement of the binary number 1001 1001 (2 marks) - (d) Perform the following operations on binary numbers - (i) 1010×1001 . (2 marks) - (ii) $100001 \div 110$. (2 marks) - (e) Solve the following linear equation: $$\frac{y+2}{3} - 1 + \frac{y}{8} = \frac{-y}{2} + 3$$ (3 marks) (f) Solve the following set of simultaneous equations using the substitution method: $$3a - 2b = 11$$ $5a + 7b = 39$ (3 marks) (g) Use a truth table to prove that $(A \land B) \Rightarrow A$ is a tautology. (4 marks) (Total: 20 marks) ## **QUESTION THREE** - (a) Write the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the following types of codes in full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a two-point description of each with the full and give a tw - (i) BCD. (3 marks) - (ii) ASCII. (3 marks) - (b) Perform the following conversions: - (i) 1101₂ to decimal. (2 marks) - (ii) B2D₁₆ to decimal. (2 marks) - (c) Use truth table to show that: - (i) $(P \rightarrow Q) \lor (Q \rightarrow P)$ is a tautology. (3 marks) - (ii) $P \rightarrow Q$ and $\sim P \vee Q$ are logically equivalent. (3 marks) - (d) Find the transpose of the following matrix: $$X = \begin{pmatrix} 2 & 4 & -1 \\ 5 & 0 & 2 \end{pmatrix}$$ (2 marks) (e) Find the inverse of matrix A where: $$\mathbf{A} = \begin{pmatrix} 4 & 5 \\ 2 & 3 \end{pmatrix} \tag{2 marks}$$ (Total: 20 marks) ## **QUESTION FOUR** (a) Solve for a and b in the following matrices: $$3 \begin{bmatrix} -a & -4 \\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ -2 & -b \end{bmatrix} = \begin{bmatrix} 6 & -12 \\ 3 & 0 \end{bmatrix}$$ (4 marks) (b) Given the following matrices: $$\mathbf{x} = \begin{bmatrix} 0 & -1 \\ 2 & -5 \end{bmatrix}, \mathbf{y} = \begin{bmatrix} -3 & 6 \\ 3 & 8 \end{bmatrix}, \mathbf{z} = \begin{bmatrix} 1 & 4 \\ -2 & 6 \end{bmatrix}$$ Simplify x (y+z) TD12 Page 2 Out of 3 Out of 3