# CEKENAS END OF TERM I EXAM-2022 <br> FORM FOUR EXAM <br> Kenya Certificate of Secondary Education.(K.C.S.E) <br> MARKING SCHEME <br> CHEMISTRY 233/1 <br> PAPER 1 

1. a) Under constant temperature and pressure, the rate of diffusion of a gas is inversely proportional to the square root of its density. $\checkmark$

$$
\frac{T_{\mathrm{NO}}}{T_{\mathrm{CO}}}=\sqrt{\frac{M_{\mathrm{NO}}}{M_{\mathrm{CO}}}}
$$

b) $\frac{20}{T_{C O}}=\sqrt{\frac{30}{28}} \quad \checkmark^{1 / 2}$

$$
\begin{aligned}
T_{C O}= & \frac{20}{1.0351} \\
& =19.322 \mathrm{sec} \text { onds }
\end{aligned}
$$

2.     - A place where experiment producing poisonous gases are carried out. $\checkmark 1$

- Storage of substances that produce foul or poisonous fumes. $\checkmark 1$

3. i) Hydrogen bond $\checkmark 1 \mathrm{mk}$
ii) Covalent bond $\checkmark 1 \mathrm{mk}$
4. i) a) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
b) $\mathrm{CaSO}_{4}, \mathrm{MgSO}_{4}$
ii) - Ion exchange

- Addition of sodium carbonate
- Distillation

5.     - Add excess Lead metal to a certain volume of nitric(v) acid. $\checkmark^{1 / 2}$

- Filter to obtain excess lead metal as a residue and lead (ii) nitrate as a filtrate. $\checkmark^{1 / 2}$
- Add distilled water to sodium sulphate to form sodium sulphate solution. $\checkmark^{1 / 2}$
- Add lead (ii) nitrate solution to sodium sulphate solution to precipitate lead (ii) sulphate and form sodium nitrate solution. $\checkmark^{1 / 2}$
-Filter to obtain lead (ii) sulphate as a residue and sodium nitrate as a filtrate. $\checkmark^{1 / 2}$
- Wash the residue and dry it between the filter paper. $\checkmark^{1 / 2}$

6. a) Yield of sulphur(vi) oxide decreases. Increase in temperature favours backward reaction which is endothermic. $\checkmark 1$
b) No effect on the yield. $\checkmark 1$ Absence of a catalyst makes the equilibrium not to be achieved faster. $\checkmark 1$
7. a)

| Element | Fe | O |
| :--- | :--- | :--- |
| Mass | 3.36 | $1.28 \checkmark 1$ |
| Molar mass | 56 | 16 |
| Mole | 0.06 | $0.08 \checkmark 1$ |
| Mole ratio | 1 x 3 | $1.333 \times 3$ |
|  | 3 | 4 |

Empirical formula $=\mathrm{Fe}_{3} \mathrm{O}_{4} \checkmark 1$
b) Reducing property $\checkmark 1$
8. a) Isotopes
b)

9. a) i) -Yellow solution changes to pale green solutions 1

- Yellow deposit. $\checkmark 1$
ii) $2 \mathrm{FeCl}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})} \longrightarrow 2 \mathrm{FeO}_{2} \mathrm{~S}_{2}(\mathrm{qq})+\mathrm{S}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{g})}$

10.     - A brown coating/ rust is observed on nail y. $\checkmark^{1 / 2}$ Rust occurs on $Y$ because silver is less reactive than iron $\checkmark^{1 / 2}$

- No brown coating/ no rust角 nail X. $\checkmark^{1 / 2}$ This is because magnesium is more reactive than iron $\checkmark^{1 / 2}$

11. a) Sodium sulphite/ $\mathrm{NaSO}_{3} \checkmark 1$
b)

12. Reactants

Products
C-C $=348 \times 1=348$
$C-C=348 \times 1=348$
C $-\mathrm{H}=6 \times 414=2484$
C-H $=5 \times 414=2070$
$\mathrm{Cl}-\mathrm{Cl}=243 \times 1=\underline{243}$
$\mathrm{C}-\mathrm{Cl}=432 \times 1=432$
$+3075 \mathrm{KJ} / \mathrm{mol} \sqrt{ } 1$
$\mathrm{H}-\mathrm{Cl}=340 \times 1=\underline{340}$
$-3190 \mathrm{KJ} / \mathrm{mol} \checkmark 1$

$$
\begin{aligned}
\Delta \mathrm{H} & =3075-3190 \mathfrak{}^{1 / 2} \\
& =-115 \mathrm{~kJ} / \mathrm{mol}^{1 / 2}
\end{aligned}
$$

13. a) Hydrogen chloride gas $\checkmark 1$
b) Polymerisation $\checkmark 1$
c) Polyvinylchloride $\sqrt{ } 1$
14. a)

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{~s})} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4(\mathfrak{l})}} \mathrm{CO}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

b) Bubble/ pass the mixture of two gases through sodium hydroxide ${ }^{-}$elution. $\checkmark 1$

- Carbon (iv) oxide is absorbed leaving carbon (ii) oxide. $\checkmark 1$

15. a) Grey solids are deposited $\mathrm{Pb}^{2+}$ ions migrate to the cathode and gain electrons to form lead metal. $\checkmark 1$
b) Electroplating

- Purification of water

16. a) Solubility $\checkmark 1$
b) When tap is opened and closed a small drop of water dissolves a large volume ${ }^{1 / 2}$ of ammonia gas creating a partial vacuum ${ }^{1 / 2}$ decreasing pressure inside the flask. When the tap is opened for the second time, water gets in forming a fountain. $\checkmark 1$
c) HCl gas $/ \mathrm{NO}_{2}$ gas
17. 


18.a) The maximum mass in grams of a solute that saturates 100 g of water at a specific temperature.
b) Mass of water $=40-15 \checkmark^{1 / 2}$

$$
=25 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O} \vee^{1 / 2}
$$

$$
\begin{aligned}
& 15 \mathrm{~g} \text { of salt }=25 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O} \\
& ? \quad=100 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O} \\
& \frac{100 \times 15}{25} \checkmark^{1 / 2}=60 \mathrm{~g} / 100 \mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O} \checkmark^{1 / 2}
\end{aligned}
$$

19.- Deforestation

- More cars
- More industries
- Sea unable to absorb extra $\mathrm{CO}_{2}$ produces.

Any two $\checkmark \checkmark 2 \mathrm{mks}$
20. Blue litmus paper remains blue; ${ }^{1} \mathrm{HCl}$ gas dissolves in methylbenzene but does not dissociate to produce $\mathrm{H}^{+}$ions. ${ }^{\checkmark} 1$
21- - The activation energy should be from the reactants to the peak. $\checkmark 1$
-The product should be below the reactants/ products should have less energy than reactants. $\checkmark 1$
22. Water has hydrogen bond $\sqrt{1 / 2}^{1 / 2}$ as intermolecular forces of attraction while $\mathrm{H}_{2} \mathrm{~S}$ gas has weaker vanderwaal forces $\checkmark^{1 / 2}$ of attraction between its molecules. Hydroge ${ }^{\text {boonds }}$ are stronger than weak vanderwaal forces. $\checkmark 1$
23. a) Atomic radius of $R$ is bigger than that of G. $\checkmark 1$
b) Oxide of A is acidic while oxide of E I basic. $\checkmark 1$
c) Indicated in the periodic table before letter C. $\checkmark 1$
24. a) Curve II
b)

25. i) - Melts into a silvery ball $\checkmark 1$

- Darts on the surface of water. $\checkmark 1$
- Ignites spontaneously to produce a lilac flame $\checkmark 1$

Any two
ii) Alkali metal
26. a) Alkynes
b) $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{g})}$
27. i) Hydrogen gas
ii) To increase surface area for absorption.
iii) - Pricking of metal.

- Treatment of sewerage
- Standardizing of pH in beers and wine. Any one $\checkmark 1 \mathrm{mk}$

28. a) $\Delta H=50 \mathrm{gx} 4.2 \mathrm{Jg}^{-1} \mathrm{k}^{-1} \mathrm{x} 3 \mathrm{~K}$

$$
=630 \mathrm{~J}
$$

b) Moles of $\mathrm{NaOH}=\frac{25 \times 0.5}{1000} \mathfrak{v}^{1 / 2}=0.0125$ moles $\mathfrak{V}^{1 / 2}$

$$
\begin{gathered}
\frac{1 \times 630}{0.0125} \checkmark^{1 / 2}=-504000 \mathrm{~J}^{1 / 2} \\
\text { OR }
\end{gathered}
$$

Moles $=-50.4 \mathrm{~kJ} / \mathrm{mol}$

