NAME	ADM NO
SCHOOL	CANDIDATES SIGN
DATE	CLASS
233/2	
CHEMISTRY PAPER 2	
JUNE-2022	
TIME: 2 HOURS	

CEKENAS END OF TERM ONE EXAM-2022 FORM FOUR EXAM

Kenya Certificate of Secondary Education.(K.C.S.E)

CHEMISTRY PAPER 2

INSTRUCTIONS TO CANDIDATES

- 1. Write your name, admission number in the space provided.
- 2. Answer all the questions in the spaces provided.
- 3. Mathematical tables and scientific calculators may be used.
- 4. All working must be clearly shown where necessary.
- 5. Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

FOR EXAMINERS USE ONLY

QUESTION	MARKS	CANDIDATES SCORE
1	13	
2	11	
3	12	
4	10	
5	11	
6	12	
7	11	
TOTAL	80 MARKS	

1

The lett	ers are r	ot the a	actual syn	nbols of th	ne eleme	nts.						
		7										
		-	7							1	Г	
											F	
	A	G				Е		В		D		
	С		<u> </u>									
		-								+		
a) i) Sh	ow the e	lectron	arrangen	nent of ion	is of eler	nents:						
	A											(½mk)
												
	В								^C 0,			(½mk)
								00				,
								NOSK				
	-			to represe	ent electr – 8)	ons draw	a diagra	m to sho	ow how	eleme	nts C	and (1mk)
oxygen	Comoni	c to 101	in a comp	ound. (O	<i>–</i> 0)		Sex					(TIIIX)
						ex	, o					
						1410						
					12.	<i>u</i> .						
				•	CLW							
h) Show	y on the	arid ah	ove an el	ement V w	whose ior	ons draw	an electro	on confi	guration	of 2.8	2 &	(1mk)
c) Com	pare the	follow	ing with	xplanatio	n.							
i) The r	eactivity	of A a	nd C									(2mks)
		برد	<u>````</u>	xplanation								
•••••	•••••	•••••					••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
											•••••	
ii) Aton	nic radii	of elen	nents A a	nd B.								(2mks)
•••••	•••••	•••••		•••••			•••••	•••••	••••••		•••••	•••••

1. The table below shows some elements in the periodic table. Use it to answer the questions that follow.

2

iii) The melting point of the oxide of element G and the oxide of D.	(2mks)
d) Name the type of bond formed when E and D react. Explain your answer.	(2mks)
e) The ionic radius of element E is bigger than its atomic radius. Explain.	(2mks)
2. The following diagram below shows a series of steps followed in the manufacture of sodium carbonate. A Mamoniator Solvay tower B Kiln	
Crystallisation Calcium hydroxide G Sodium Carbonate	Water
a) Name substances A and B	(2mks)
A	
B	
b) Write equations for the reactions taking place in:	

i) The solvay tower.	(2mks)
ii) Chamber E.	(1mk)
c) i) Identify substance G.	(1mk)
ii) State one laboratory use and one industrial use of substance G. I. Laboratory use	(1mk)
I. Laboratory use	
II. Industrial use	(1mk)
d) Name one most important industry where sodium carbonate is used as a raw material.	(1mk)
e) The reaction equation below represents a chemical change that occurs when hydrated sodium carbonate is exposed to the air for 24 hrs.	
$Na_2CO_3.10H_2O_{(4)}$ Exposure to air $Na_2CO_3.H_2O + 9H_2O$	
i) Give the name of the chemical change represented by the above equation.	(1mk)
ii) What observable change is accompanied by the above reaction?	(1mk)

2	D .	1	C .1	C 11 '	1
3. a)	Draw t	he structu	res of the	following	compounds.

(2mks)

i) 2 – methylbut-2-ene

ii) heptanoic acid

c) Use the flow chart below to answer the questions that follow?

i) Name:

I. The type of reaction that occurs in step VII. (1mk)

ii) What conditions and reagents are necessary to convert CH ₃ CH ₂ OH	to CH ₃ CH ₂ COOCH ₂ CH ₃ in step II
Conditions	(1mk)
Reagent	(1mk)
iii) Give the formula and name of substance C.	(1mk)
iv) Give the reagent and conditions necessary for the reaction in step	20x
est CS .	
and the	
v) i)Draw and name the structure of polymer P.	(1mk)
to the exams	
ii) Name one use of the polymer P.	(1mk)
4. a) Two reagents that can be used to prepare chlorine gas are manga hydrochloric acid.	nese (IV)oxide and concentrated
i) Write an equation for the reaction.	(1mk)

II. Substance B

chlorine gas.	(1mk)
iii) Describe how the chloring gas could gas could be dried in the	no laboratory (1mk)
iii) Describe how the chlorine gas could gas could be dried in the	ne laboratory. (1mk)
b) In an experiment dry chlorine gas was reacted with aluminur	n as shown in the diagram below.
Combustion tube	escide.
Chlorine WA MINIMA	A.
i) Name substance A.	(1mk)
ii) Write an equation for the reaction that took place in the com	bustion tube. (1mk)
etalle	
iii) 0.84g of aluminium reacted completely with chlorine gas. C (Molar gas volume is $24 \text{dm}^3 \text{Al} = 27$).	(3mks)

v) Give two reasons why calcium oxide is used in the set-up.		
5. The combustion of propane can be represented by the following equation:		
$C_3H_{8 (g)} + 5O_{2 (g)}$ \longrightarrow $3CO_{2 (g)} + 4H_2O_{(1)}$		
a) i) Define the term 'molar enthalpy of combustion' of a compound.	(1mk)	
ii) Use the thermo chemical equations below to answer the questions that follow.		
1. $C_{(graphite)(s)} + O_{2} \xrightarrow{(g)} CO_{2} \xrightarrow{(g)} \Delta H_{1} = -393.5 \text{kJ/mole}$		
2. $H_{2(g)} + \frac{1}{2}O_{2(g)}$ \longrightarrow $H_{2}O_{(1)}$ $\Delta H_{2} = -285.8 \text{kJ/mole}$		
3. $3C_{\text{(graphite)(s)}} + 4H_{2(g)} \longrightarrow C_3H_{8(g)}$ $\Delta H_3 = -103.7kJ$ mole		
I. Name the type of enthalpy change represented by ΔH_3 .	(1mk)	
"Theo.		
II. Draw an energy level diagram for the reaction represented by equation 1.	(3mks)	
tiee examination of the second		
iii) Using energy cycle diagram, calculate the molar enthalpy of combustion of propane.	(3mks)	

b) The enthalpy of formation of ethanol (CH ₃ CH below to calculate the bond energy of formation		3239Kj/1	mole. Us	e the bon	d energies	given (3mks)
C-C = -346kJ/mole						
C-H = -414kJ/mole						
C-O = -360 kJ/mole						
6. Equal volumes of dilute sulphuric (vi) acid of 0.26g of zinc granules was used in each experim noted. The table below shows the results obtaine	ent and ti			- ()		
Acid concentration	0.25M	1.5MQ	1.6M	2.6M	3.5M	
Time in sec	500	250	67.5	40	30	
$\frac{1}{time(s^{-1})}$	NA.					
a) i) Complete the table above by calculating $\frac{1}{tim}$	<u>e</u>					(2mks)
forties						

in) Using the graph determine the rate of reaction when the concentration is 1.51vi.	(TIIIK)
iv) Briefly explain the relationship between the rate of reaction and concentration.	(2mks
401 Kes	
· · · · · · · · · · · · · · · · · · ·	
v) Identify any other condition if carried would increase the rate of reaction between Zinc and suplhuric (vi) acid.	(1mk)

b) What volume of hydrogen gas is evolved when all the z acid. ($Zn = 65.4$, molar gas volume = 22.4 litres)	zinc is reacted with excess dilute sulphuric (vi) (3mks
7. Study the scheme below and answer the questions that f	White predipitate Ca(OH)2(aq) Gas V HNO3(aq)
a) What property of mixture S is shown in step 1.	(1mk)
b) Name the following. i) Solid U	(1mk
ii) Solid V	

c) Write the formula of precipitate R.	(1mk)
d) Identify the ions present in solution T.	(1mk)
e) Write an ionic equation for the reaction between solution T and Barium chloride solution	. (1mk)
f) Identify mixture S.	(1mk)
g) i) Write a chemical equation for the reaction in which the white precipitate dissolves in exin Step II.	xcess reagent (1mk)
iii) Name the complex ion formed in Step III.	(1mk)
h) Starting with lead (II) oxide, describe how a pure sample of lead (II) sulphate can be preplaboratory.	(3mks)

THIS IS THE LAST PRINTED PAGE!