\qquad
SCHOOL \qquad CANDIDATES SIGN \qquad

DATE \qquad CLASS \qquad

CHEMISTRY PAPER 3

FORM IV

TIME: 2 ¼ HOURS

CEKENAS END OF TERM ISEXAM-2022
 FORM FOUR EXAM

Kenya Certificate of Secondary Education.(K.C.S.E) CHEMISTRY PAPER 3

INSTRUCTIONS TO CANDIDATES

1. Write your name, admission number in the space provided.
2. Answer all the questions in the spaces provided.
3. Mathematical tables and scientific calculators may be used.
4. All working must be clearly shown where necessary.
5. You are not allowed to startworking with the apparatus for the first 15 minutes. This time is to enable you read the question paper and make sure you have all the requirements.
6. Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

FOR EXAMINERS USE ONLY

QUESTION	MARKS	CANDIDATES SCORE
1	20	
2	12	
3	08	
TOTAL	40 MARKS	

1. You are provided with:
-1.5 g of solid R

- Solution P which is dilute hydrochloric acid
- Solution Q that was made by dissolving 12 g of sodium hydroxide in $500 \mathrm{~cm}^{3}$ of water

You are required to:
i) Calculate the molar enthalpy change for the reaction between solid R and dilute hydrochloric acid.
ii) Standardize hydrochloric acid solution P using sodium hydroxide solution Q .

PROCEDURE 1

Using a clean burette, transfer $50 \mathrm{~cm}^{3}$ of solution P into a clean 100 ml plastic beaker. Measure the temperature of solution P for every $1 / 2$ minute up to 1 minute and record your results in table 1 .

At exactly $11 / 2$ minutes add all solid R at once stir the mixture carefully with the thermometer. Measure the temperature of the solution after every $1 / 2$ minute up to $5^{\text {th }}$ minute. Record ygur results in table 1 below. (RETAIN THIS SOLUTION FOR USE IN PROCEDURE II)

Table 1
(3mks)

Time (min)	0	$1 / 2$	1	$1^{1 / 2}$	2	$2^{1 / 2}$	3	$3^{1 / 2}$	4	$4^{1 / 2}$
Temperature $\left({ }^{0} \mathrm{c}\right)$				2^{2}						

(a) Draw a graph of temperature against time inthe grid provided below (3mks)

b) From the graph, calculate the temperature change for the reaction.
c) Calculate the energy change for the reaction between solid R and dilute hydrochloric acid.
$\left(\right.$ S.H.C $=4.2 \mathrm{~J} / \mathrm{g} / \mathrm{k}$, density $=1 \mathrm{~g} / \mathrm{cm}^{3}$)
d) Determine the enthalpy change for the reaction between onemole of solid R and dilute hydrochloric acid solution P. (RFM of solid R=84)

PROCEDURE II

Transfer all the solution fomed from procedure I into a clean 250 ml beaker. Using a measuring cylinder add $50 \mathrm{~cm}^{3}$ of distilled water to the solution and swirl. Label this solution as solution R. Empty the burette and rinse it with distilled water. Fill the burette with solution R. Using pipette filler, pipette $25 \mathrm{~cm}^{3}$ of sodium hydroxide solution Q into a clean conical flask. Titrate solution R against solution Q using phenolphthalein indicator. Record your results in table II. Repeat the titration two more times and complete table II below.

Table II

Final burette reading cm^{3}	I	II	III
Initial burette reading cm^{3}			
Volume of solution R used cm^{3}			

f) Calculate the concentration of sodium hydroxide solution Q in moles per litre. $(\mathrm{Na}=23 \mathrm{O}=16 \mathrm{H}=1)$. (1mk)
g) Calculate the number of moles of:
i) Solution Q that reacted with solution R .
ii) Hydrochloric acid in $100 \mathrm{~cm}^{3}$ of solution R prepared.
iii) Given that 1 mole of solid R reacts with 1 mole of hydrochloric acid, calculate the number of moles of hydrochloric acid in the original $50 \mathrm{~cm}^{3}$ of solution P used.
h) Calculate the molarity of solution P in moles per litre.
2. You are provided with solid H. carry out the experiments below, write your observations and inferences in the spaces provided.
a) Place all of the solid H in a boiling tube add $15 \mathrm{~cm}^{3}$ of distilled water and shake well.
i) To about $2 \mathrm{~cm}^{3}$ of solution formed add sodium hydroxide solution drop wise until excess.

Observations	Inferences
	$(1 \mathrm{mk})$

ii)) To about $2 \mathrm{~cm}^{3}$ of solution formed add ammonia solution drop wise until excess.

Observations	Inferences
$(1 \mathrm{mk})$	

iii) To about $2 \mathrm{~cm}^{3}$ of solution formed add 2 drops of lead (H) hiftrate solution.

iv) To about $2 \mathrm{~cm}^{3}$ of solution formed add 2 drops of potassium iodide solution.

Observations	Inferences	
	$(1 \mathrm{mk})$	

v) To about $2 \mathrm{~cm}^{3}$ of solution formed add $2 \mathrm{~cm}^{3}$ of sodium hydroxide solutions followed by a small piece of aluminium foil. Warm the mixture and test any gases produced with both blue and red litmus paper.

Observations	Inferences
	$(2 \mathrm{mk})$

3. You are provided with solid G. carry out the tests below. Write your observations and inferences in the spaces provided.
a) Scoop one third of solid G using a spatula. Heat the solid in a non-luminous flame.

Observations	Inferences
$(1 \mathrm{mk})$	

b) Place the rest of solid G in a boiling tube. Add about $10 \mathrm{~cm}^{3}$ of distilled water. Filter the mixture.
i) To about $2 \mathrm{~cm}^{3}$ of filtrate add 2 drops of acidified potassitim manganate (vii) solution.

b) ii) To about $2 \mathrm{~cm}^{3}$ of filtrate add 2 drops bof acidified potassium dichromate (VI) solution.

Observations	Inferences	
		$(1 \mathrm{mk})$
		$(1 \mathrm{mk})$

iii) Dip a universal paper to the remaining filtrate.

Observations	Inferences		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

THIS IS THE LAST PRINTED PAGE!

