CHEMISTRY 233/2

MARKING SCHEME

1. (a) (i) $K \quad \sqrt{1} \mathbf{m k}$
(ii) J or C $\sqrt{1} \mathbf{m k}$
(iii) Group 4 , period i.e. below S in the grid
(iv) J and U are in the same period and across the period the nuclear charge increases hence nuclear
charge of U is greater than that of J hence it pulls the outermost electron more strongly reducing the radius.
(v) \mathbf{Y} - is better conductor because it has more delocalized electrons. $\mathbf{O R} \mathbf{Y}$ - has 3 delocalized electrons while A how one delocalized electron.
(vi) The B.p of the elements increases $\sqrt{ } \mathbf{1} \mathbf{m k}$ down the group. This is because the intermolecular forces of attraction increase $\sqrt{ } \mathbf{1 m k}$ down the group with increase in the size of the molecules.
(b) (i) \mathbf{V} and $\mathbf{G} \sqrt{ } \mathbf{1 m k}$ because they are in the same group or loses 2electrons / some number of electrons in the outer energy levels.
(ii) $\mathbf{X}, \sqrt{1} / 2 \mathbf{m k}$ because its ionic radius is bigger tendency to donate its electron is high. $\sqrt{1} / 2 \mathrm{mk}$
(iii) $\mathrm{E}, \sqrt{1} 1 / 2 \mathbf{m k}$ because its ionic radius is bigger than atomic radius so its tendency to donate its electron is high. $\sqrt{1} / 2 \mathbf{m k}$
2. (a) Fractional distillation $\sqrt{ } \mathbf{1} \mathbf{m k}$
(b) (i) Cracking - is the braking of long-chain alkane molecules into shorter alkanes and an alkene by
heating or use of catalyst. $\sqrt{1} \mathbf{m k}$
(ii) - Heat or temperature $400^{\circ} \mathrm{C}-700^{\circ} \mathrm{C}$ Any two correct forv 1 mk each

- Silica $/ \mathrm{SiO}_{2}$ or Catalyste silica $/ \mathrm{SiO}_{2}$
- Aluminium oxide $\mathrm{Al}_{2} \mathrm{O}_{3}$
(iii) $\mathrm{C}_{10} \mathrm{H}_{22(\mathrm{l})} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}{ }^{+}+\mathrm{C}_{5} \mathrm{H}_{10(\mathrm{~g})} \quad \sqrt{1} \mathrm{mk}$
(iv)

(v) Shake a sample with;

Bromine $\mathrm{C}_{5} \mathrm{H}_{12}$ does not decolourise, $\mathrm{C}_{5} \mathrm{H}_{10}$ decolourise OR. - Acidified
Potassium chromate (VI) with $\mathrm{C}_{5} \mathrm{H}_{12}$ the orange colour does not change but with $\mathrm{C}_{5} \mathrm{H}_{10}$ the orange colour changes to green $\boldsymbol{O R}$ Burn a sample of $\mathrm{C}_{5} \mathrm{H}_{12}$ burns with a nonluminous flame;
while $\mathrm{C}_{5} \mathrm{H}_{10}$ burns with luminous
(c) (i) Soapy $\sqrt{ } 1 \mathrm{mk}$ Detergent $\sqrt{ } 1 \mathrm{mk}$
(ii) Soapless detergent $\sqrt{ } 1 \mathrm{mk}$ because it is non-biodegradable $\sqrt{ } 1 \mathrm{mk}$ hence
pollutes the

Environment.

3. (a) (i) Name - Aluminium hydroxide $\sqrt{1} / 2$

Formula: $\mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})} \quad \sqrt{1} / 2 \quad(1 \mathrm{mk})$
(ii) Name: Sodium aluminate / tetrahydroxo aluminate $\sqrt{ } 1$

Formular: $\mathrm{NaAl}(\mathrm{OH})_{4(\mathrm{aq})} /\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-(\mathrm{aq})} \quad \sqrt{1} \quad(2 \mathrm{mks})$
(b) Amphoterism
(c) $\mathrm{Al}(\mathrm{OH})_{3(\mathrm{~s})}+\mathrm{OH}_{-(\mathrm{aq)}} \rightarrow\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{(\mathrm{aq})}^{-} \quad(1 \mathrm{mk})$
d) i)

(ii) I. $33 / 100 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}$ (must be on the graph)
II. $25^{\circ} \mathrm{C} \sqrt{ } 1$
III. Solubility of X at $30^{\circ} \mathrm{C}={ }^{19 \mathrm{~g}} / 100 \mathrm{~g}$ of water mass of crystals deposited $50-19=31 \mathrm{~g} \sqrt{1} / 2(1 \mathrm{mk})$
4. (a) (i) Water
(ii) 6.5 ; $\sqrt{ } 1$ presence of Carbonic acid
i.e $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$
(iii) $2 \mathrm{Na}_{2} \mathrm{O}_{2(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 4 \mathrm{NaOH}_{(\mathrm{aq})}+2 \mathrm{O}_{2(\mathrm{~s})} \quad \sqrt{ } 1$
(b) (i) to lower the melting point of sodium chloride $\sqrt{ } 1$
(ii) sodium react with air and water vigorously/sodium would react with moist air $\sqrt{ } 1$
(c) (i) If CO_{2} is bubbled in lime water for a few minutes white ppt. is formed. No white ppt. forms when CO is bubbled into lime water.
(ii) - Extraction of metals $\sqrt{ } 1$
(d) CO_{2} is highly soluble $\sqrt{1} / 2$ in sodium hydroxide to form $\mathrm{Na}_{2} \mathrm{CO}_{3} \sqrt{1} 1 / 2$ soluble in water to form Carbonic acid. $\sqrt{ }$ (2mks)
5. (a) (i) A - Concentrated hydrochloric acid $\sqrt{ } 1$
B - water $\sqrt{ } \quad 1 \mathrm{mk}$
(ii) Calcium oxide / CaO $\sqrt{ }$ (1mk)
(iii) To absorb unreacted /excess chlorine $\sqrt{ }$
(iv) $2 \mathrm{KMnO}_{4(\mathrm{~s})}+16 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow 2 \mathrm{KCl}_{(\mathrm{aq})}+2 \mathrm{MnCl}_{(\mathrm{aq})}+8 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{a}} \neq 5 \mathrm{Cl}_{2(\mathrm{~g})} \sqrt{ } 1$
(v) Solid C sublimes $\sqrt{ }$ hence collects on a cooler place away fromheating.
(vi) Elements present Mass/volume
Al
0.675
$1800 \mathrm{~cm}^{3}$
R.A.M/M.G.V 27

No. of moles

$$
\frac{0.675}{27} \sqrt{1} 1 / 2=-0.0025 \sqrt{1} / 2 \frac{1800}{24100}=0.075
$$

Mole ratio $\quad \frac{0.025}{0.025}=1 \sqrt{ } 1 / 20 Q \frac{0.075}{0.025}=3$
$E F=$ AlCl $_{3} \sqrt{1} / 2$
$\left(\mathrm{AlCl}_{3}\right) \mathrm{n}=267 \sqrt{1 / 2}$
$(27+35.5 \times 3) n=267$
$\mathrm{n}=\underline{267}=2 \sqrt{1} 1 / 2$
133.5
M.F $=\left(\mathrm{AlCl}_{3}\right)_{2}=\mathrm{Al}_{2} \mathrm{Cl}_{6} \quad \sqrt{1 / 2}$
(b) (i) $6 \mathrm{NaOH}_{(\mathrm{aq})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{NaClO}_{3(\text { aq) })}+5 \mathrm{NaCl}_{(\text {aq) })}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
(ii) Bleaching agent in paper pulp $\sqrt{ } 1 / /$ Used as herbicides $\sqrt{ } 1$
(c) Sulphur (IV) oxide bleaches by reduction $\sqrt{1} / 2$ and removal of oxygen from the dye hence temporary $\sqrt{1} 1 / 2$ while chlorine bleaches by oxidation $\sqrt{1} 12 /$ adding oxygen to the dye hence permanent. $\sqrt{11 / 2}$
6.
A.
(i)
(a) Carbon (IV) oxide or CO_{2} or Carbon (IV) oxide (CO_{2}) $\sqrt{1} \quad$ (Any)
(b) $\quad \mathrm{KOH}_{(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})} \longrightarrow \mathrm{KHCO}_{3(\mathrm{qq)}} \sqrt{ } 1$
Wrong balanced $=0$
State symbols wrong or missing $1 / 2$ mark
(ii) Oxygen gas or $\mathrm{O}_{2(\mathrm{~g})}$ or oxygen $\left(\mathrm{O}_{2}\right)$ gas $\sqrt{ } 1$
(iii) \quad Nitrogen gas or $\mathrm{N}_{2(\mathrm{~g})}$ or nitrogen $\left(\mathrm{N}_{2}\right)$ gas. $\sqrt{ } 1$
B. (i) Moles of nitrogen $=\frac{1.54}{14} \sqrt{ } 1 / 2=0.11 \sqrt{ } 1 / 2$

Moles of oxygen $=\frac{3.53}{16} \sqrt{1 / 2}=0.22 \sqrt{ } 1 / 2$
(ii)

Mole ratio	N	O
	$0.11=1 \sqrt{ } 1 / 2$	$\underline{0.22}=2 \sqrt{1 / 2}$
	0.11	0.11
	$\mathrm{NO}_{2} \sqrt{1}$	

(iii) Compound has low melting and boiling points $\sqrt{ } 1$ becauséit has a weak Van der wall forces $\sqrt{ } 1$
7. (a) copper oxide / CuO

$$
\sqrt{ } 1 \mathrm{mk}
$$

(b) $\mathrm{CuSO}_{4(\mathrm{qq})}+\mathrm{Na}_{2} \mathrm{CO}_{3(\text { aq })} \longrightarrow \mathrm{CuCO}_{3(\mathrm{~s})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\text { aqq })} \mathrm{e}^{\mathrm{e}} \quad \sqrt{ } 1 \mathrm{mk}$
(c) (i) Sodium sulphate / $\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\sqrt{ } 1 \mathrm{mk}$
(ii) Copper carbonate $\quad \sqrt{ } 1 \mathrm{mk}$
(d) $\left.\mathrm{CuO}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \mathrm{CuSO}_{4(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}\right)^{\mathrm{o}} \sqrt{ } 1$
(e) $\mathrm{Cu}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \longrightarrow \mathrm{CuCO}_{3(\mathrm{~s})} \quad \mathrm{Al}_{\mathrm{mk}}$
(f) $\mathrm{CuCO}_{3(\mathrm{~s})} \xrightarrow{\text { heat }} \overrightarrow{\mathrm{CuO}_{(\mathrm{s})}}+\mathrm{CO}_{2(\mathrm{~g})} \sqrt{ } 1 \mathrm{mb}^{\mathrm{N}}$
(g) Filtrate $\sqrt{ } 1 / 2$

Beaker $\sqrt{1 / 2}$
Water bath $\sqrt{1} 1 / 2$
Tripond stand $\sqrt{ } 1 / 2$
Workability $\sqrt{ } 1 \mathrm{mk}$

