CHEMISTRY 233/2 MARKING SCHEME

- 1. (a) (i) K $\sqrt{1}$ **mk**
 - (ii) J or C $\sqrt{1}$ mk
 - (iii) Group 4, period i.e. below S in the grid
- (iv) J and U are in the same period and <u>across the period the nuclear charge</u> increases hence nuclear

charge of U is greater than that of J hence it pulls the outermost electron more strongly reducing the radius.

(v) \mathbf{Y} – is better conductor because it has more delocalized electrons. \mathbf{OR} Y- has 3 delocalized

electrons while A how one delocalized electron.

- (vi) The B.p of the elements increases $\sqrt{1}$ mk down the group. This is because the intermolecular forces of attraction increase $\sqrt{1}$ mk down the group with increase in the size of the molecules.
- (b) (i) \mathbf{V} and $\mathbf{G}\sqrt{1}\mathbf{m}\mathbf{k}$ because they are in the same group or loses 2 electrons / some number of electrons in the outer energy levels.
- (ii) \mathbf{X} , $\sqrt{1/2}\mathbf{m}\mathbf{k}$ because its ionic radius is bigger tendency to donate its electron is high. $\sqrt{1/2}\mathbf{m}\mathbf{k}$
- (iii) E, $\sqrt{\frac{1}{2}mk}$ because its ionic radius is bigger than atomic radius so its tendency to donate its electron is high. $\sqrt{\frac{1}{2}mk}$
- 2. (a) Fractional distillation $\sqrt{1}$ mk
- (b) (i) Cracking is the braking of long-chain alkane molecules into shorter alkanes and an alkene by

heating or use of catalyst. √1mk

- (ii) Heat or temperature 400°C Any two correct for√1mk each
 - Silica /SiO₂ or Catalyst silica /SiO₂
 - Aluminium oxide Al₂O₃
- (iii) $C_{10}H_{22(1)} \rightarrow C_5H_{12} + C_5H_{10(g)}$ $\sqrt{1}$ mk

(iv) Η Η H H $\sqrt{1/2}$ mk н н н Pent-1-ene √½mk Η Η Н Н $\sqrt{1/2}$ mk C = C - C - C - C - HΗ Η н н н Pent-2-ene √½mk √½mk Η Н Н $\sqrt{1/2}$ mk нс н 3-methylbut-1-ene Η 2-methyl but- 1-ene Η Η H - C = C - Cdrawing ½mk Any two; naming ½mk

(v) Shake a sample with;

2-methylbut-2-ene

Bromine C₅H₁₂ does not decolourise, C₅H₁₀ decolourise *OR*. – Acidified

Potassium

chromate (VI) with C₅H₁₂ the orange colour does not change but with C₅H₁₀

the orange

colour changes to green OR Burn a sample of C5H12 burns with a non-

luminous flame;

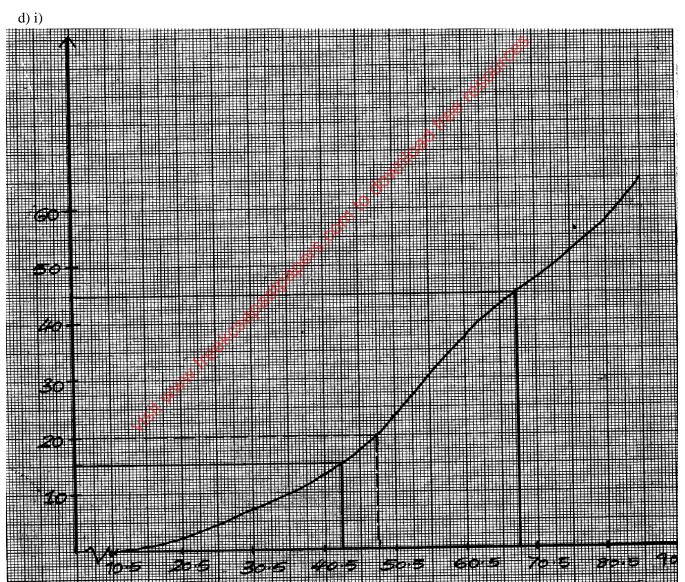
while C₅H₁₀ burns with luminous

- (c) (i) Soapy $\sqrt{1}$ mk Detergent $\sqrt{1}$ mk
 - (ii) Soapless detergent $\sqrt{1}$ mk because it is non-biodegradable $\sqrt{1}$ mk hence

pollutes the

Environment.

3. (a) (i) Name – Aluminium hydroxide $\sqrt{\frac{1}{2}}$


Formula: Al(OH)_{3(s)} $\sqrt{1/2}$ (1mk)

(ii) Name: Sodium aluminate / tetrahydroxo aluminate $\sqrt{1}$

Formular: NaAl(OH)_{4(aq)} /[Al(OH)₄] $^{-}$ _(aq) $\sqrt{1}$ (2mks)

(b) Amphoterism

(c) $Al(OH)_{3(s)} + OH_{-(aq)} \rightarrow [Al(OH)_4]_{-(aq)}$ (1mk)

(ii) I . 33/100g of H_2O (must be on the graph)

II. 25°C √1

III. Solubility of X at 30° C = $^{19g}/_{100g}$ of water mass of crystals deposited 50-19 = 31g $\sqrt{1/2}$ (1mk)

- 4. (a) (i) Water
 - (ii) 6.5; √1 presence of Carbonic acid

i.e
$$CO_2 + H_2O \rightarrow H_2CO_3$$

(iii)
$$2 \text{ Na}_2\text{O}_{2(s)} + 2\text{H}_2\text{O}_{(l)} \rightarrow 4\text{NaOH}_{(aq)} + 2\text{O}_{2(s)}$$
 $\sqrt{1}$

- (b) (i) to lower the melting point of sodium chloride $\sqrt{1}$
 - (ii) sodium react with air and water vigorously/sodium would react with moist air $\sqrt{1}$
- (c) (i) If CO₂ is bubbled in lime water for a few minutes white ppt. is formed. No white ppt. forms when CO is bubbled into lime water.
 - (ii) Extraction of metals
- (d) CO₂ is highly soluble $\sqrt{1/2}$ in sodium hydroxide to form Na₂CO₃ $\sqrt{1/2}$ soluble in water to form Carbonic acid. $\sqrt{\text{(2mks)}}$
- A Concentrated hydrochloric acid√1 5. (a) (i)

$$B - water \sqrt{1mk}$$

- (ii) Calcium oxide / CaO√ (1mk)
- (iii) To absorb unreacted /excess chlorine √
- (iv) $2KMnO_{4(s)} + 16HCl_{(aq)} \rightarrow 2KCl_{(aq)} + 2MnCl_{(aq)} + 8H_2O_{(b)} \rightarrow 5Cl_{2(g)} \sqrt{1}$

Al

- (v) Solid C sublimes $\sqrt{}$ hence collects on a cooler place away from heating.
- (vi) Elements present

R.A.M/M.G.V 27

$$\frac{0.675}{27}\sqrt{\frac{1}{2}} = 0.0025\sqrt{\frac{1}{2}} \quad \frac{1800}{24100} = 0.075$$

$$\frac{0.025}{0.025} = 1\sqrt{\frac{1}{2}} \frac{0.075}{0.025} = 3$$

$$EF = AICl_3 \sqrt{1/2}$$

$$(AlCl_3)n = 267 \sqrt{1/2}$$

$$(27 + 35.5 \times 3)$$
n = 267

$$n = \underline{267} = 2 \sqrt{1/2}$$
133.5

$$M.F = (AlCl_3)_2 = Al_2Cl_6$$

$$AlCl_3)_2 = Al_2Cl_6 \qquad \forall$$

- (b) (i) $6NaOH_{(aq)} + 3Cl_{2(g)} \rightarrow NaClO_{3(aq)} + 5NaCl_{(aq)} + 3H_2O_{(l)}$
 - (ii) Bleaching agent in paper pulp $\sqrt{1}$ // Used as herbicides $\sqrt{1}$
- (c) Sulphur (IV) oxide bleaches by reduction $\sqrt{\frac{1}{2}}$ and removal of oxygen from the dye hence temporary $\sqrt{1/2}$ while chlorine bleaches by oxidation $\sqrt{1/2}$ adding oxygen to the dye hence permanent. $\sqrt{1/2}$
- Carbon (IV) oxide or CO2 or 6. A. (i) (a) Carbon (IV) oxide (CO₂) $\sqrt{1}$ (Any)
 - $KOH_{(aq)} \ + \ CO_{2(g)}$ ➤ KHCO_{3(aq)} √1 (b) Wrong balanced = 0State symbols wrong or missing ½ mark

- Oxygen gas or $O_{2(g)}$ or oxygen (O_2) gas $\sqrt{1}$ (ii)
- (iii) Nitrogen gas or $N_{2(g)}$ or nitrogen (N_2) gas. $\sqrt{1}$
- $\frac{1.54}{14} \sqrt{\frac{1}{2}} = 0.11 \sqrt{\frac{1}{2}}$ B. (i) Moles of nitrogen

 $\frac{3.53}{16} \sqrt{\frac{1}{2}} = 0.22 \sqrt{\frac{1}{2}}$ Moles of oxygen

- (ii) $\frac{0.11}{0.11} = 1\sqrt{1/2}$ Mole ratio Simplest formula
- Compound has low melting and boiling points √1 because it has a (iii) weak Van der wall forces √1
- 7. (a) copper oxide / CuO √1mk
 - (b) $CuSO_{4(aq)} + Na_2CO_{3(aq)}$ $CuCO_{3(s)} + Na_2SO_{4(aq)}$ √1mk
 - (c) (i) Sodium sulphate / Na₂SO₄

√1mk


- (ii) Copper carbonate √1mk
- (d) $CuO(s) + H_2SO_4(aq) \longrightarrow CuSO_4(aq) + H_2O(1)$
- (e) $Cu^{2+}(aq) + CO_3^{2-}(aq)$ $CuCO_3(s)$ (f) $CuCO_3(s)$ heat $CuO_{(s)} + CO_2(g)\sqrt{1}$
- (g) Filtrate √½

Beaker √½

Water bath√½

Tripond stand $\sqrt{\frac{1}{2}}$

Workability √1mk

