MARKING SCHEME

BUNAMFAN CLUSTER EXAMINATION 2022
 END OT TERM ONE 2022
 233/3
 CHEMISTRY
 PAPER THREE(PRACTICAL)

JUNE 2022

2 HOURS 15 MINUTES

QUESTION 1.

PROCEDURE I

TABLE 1

Complete table. 1 mk or $1 / 2 \mathrm{mk}$ or 0
Decimal 1 mk or 0
Accuracy .1 mk or $1 / 2 \mathrm{mk}$ or 0
Principles of averaging......... 1 mk or $1 / 2 \mathrm{mk}$ or 0
Final accuracy 1 mk or $1 / 2 \mathrm{mk}$ or 0
(a) Calculate the average volume of solution M used. (1 mark)
$\mathrm{V}=\mathrm{a}+\mathrm{b}+\mathrm{c} / 3$ or $\mathrm{a}+\mathrm{b} / 2$ or $\mathrm{b}+\mathrm{c} / 2$
Working.................. $1 / 2 \mathrm{mk}$
Correct ans.................... $1 / 2 \mathrm{mk}$
Correct to atleast 2dp unless exactly to 1dp or whole no.
(b) Concentration (1 mark)
$23.5 / 392=0.06 \mathrm{M}$
Ans should be exact otherwise penalize $1 / 2 \mathrm{mk}$ /
(c) Calculate number of moles of solution Fe^{2+} in $25 \mathrm{~cm}^{3}$. (1 mark)
$25 \times 0.06 / 1000=0.0026$ moles
Ans in 4dp otherwise penalize $1 / 2 \mathrm{mk}$ for rounding off.
(d) The concentration 1 marks)

Mole ratio 5:1
Moles in c x $5=$ ans
Ans x1000/ av volume
$=$ final ans

PROCEDURE II
(e) Calculate the average volume of sofution A used in table II.. (1 mark)

AS IN TABLE 1

(f) Calculate the number of moles of manganate (VII) ions in table II above. (1 mk)

Ans in (d) av volume table 2 / 1000
= correct afrs.
(g) Given that 2 moles of of manganate (VII) ions react with 5 moles of the dibasic acid C, calculate the number of moles of the dibasic acid used in moles per litre. (1 mk)

Mole ratio = 2:5,
Moles of dibasic acid= Ans in (f) x $5 / 2$
$=$ ans
Molarity = ans x 1000/25
=correct ans
(h) Calculate the:
(I) Formula mass of the dibasic acid, solution C. $(\mathrm{H}=1.0, \mathrm{O}=$ 16.0) (1 mk)

5 / ans in (g)
Correct ans .
Ans can be whole number or DP
(II) Formula mass of X in the dibasic acid C. $(1 \mathrm{mk})$

Ans in $h(I)=2+x+2(18)$
$\mathrm{X}=$ Ans in $\mathrm{h}(\mathrm{I})-38$
= Correct ans.
ANS BETWEEN 80-90 otherwise penalize $1 / 2 \mathrm{mk}$
Ans can be whole number or dp.

QUESTION 2

You are provided with solid M. carry out the tests and write your observations and inferences in the spaces provided.
(a) Describe the appearance of solid M. (1 mark)

Appearance
White solid/white powder/white crystal
$(1$ mark $)$

(b) Place the solid M in a boiling tube. Add about $12 \mathrm{~cm}^{3}$ of distilleffwater and Shake well. Divide the solution into five portions and carry the tests below.
(I) To the first portion, dip both red and blue citmus paper.

| Observations | Inferences |
| :--- | :--- | :--- |
| Blue litmus changes red. $\ldots 1 / 2 \mathrm{mk}$
 Red litmus paper remain red...1/2 mk
 $(1$ mark $)$ | Acidic solution. |

(II) To the second .portion, add sodium hydroxide solution dropwise until in excess.

Observations	Inferences
White ppt that dissolves in excess to form a colourless solution $(1$ mark $)$	$\mathrm{Zn}^{2+} / \mathrm{Al}^{3+} / \mathrm{Pb}^{2+}$

(III) To the third portion, add aqueous ammonia dropwise until in excess.

Observations	Inferences
White ppt that is insoluble	$\mathrm{Al}^{3+} / \mathrm{Pb}^{2+}$
$(1$ mark $)$	$(1$ mark $)$

(IV) To the fourth portion, add three drops of sodium chloride solution.

Observations	Inferences
No white ppt	Al^{3+} present... 1 mk
	Award $1 / 2 \mathrm{mk}$ for Pb^{2+} absent if Al^{3+} is not inferred. $(1$ mark $)$

(V) To the fifth portion, add two drops of barium nitrate followed by five drops of nitric (V) acid.

3. You are provided with solid P. Carry out the following tests and record your observations and inferences in the spaces provided.
(a) Place about one third of the solid P on a clean metallic spatula and ignite using a Bunsen burner.

Observations	Inferences
Melts to a colourless liquid that burns with yellow sooty flame	$=\mathrm{C}=\mathrm{C}=\ldots . .1 \mathrm{mk}$
(1 mark)	Or triple bond structure.. (1 mark)

(b) Place the remaining solid P in a boiling tube. Add about $10 \mathrm{~cm}^{3}$ of distilled water and Shake well.

Observations	Inferences
Dissolves to form a colourless solution (1/2 mark)	Polar/ soluble substance $(1 / 2$ mark $)$

(c) Divide the mixture into three portions.
i. To the first portion add two drops of acidified petassium manganate(VII).

Observations	Inferences	
Purple potassium manganate(VII) solution changes colourless/ decolourised.	or (1 mark)	or $=\ldots .1 / 2 \mathrm{mk}$ triple bond structure. ROH $\ldots . .1 / 2 \mathrm{mk}$

ii. To the second portion, add two drops of bromine water.

Observations	
Orange bromine water ctianges colourless/ decolourised. $(1$ mark $)$	Inferences

To the third portion, describe the procedure you can use to determine the PH using the reagents given.

Procedure:

To the solution add few drops of universal indicator solution.
Match colour with PH chart to get corresponding PH.
(1 mark)
ii. Carry out your procedure in (iii) to determine the PH.

Observations	Inferences
PH = 4 or 5 or 6 $\ldots \ldots . .1 \mathrm{mk}$ Reject range of PH eg PH 4-6 (1 mark)	Weakly acidic.
(1 mark)	

