## BUNAMFAN CLUSTER EXAMINATION - 2022

Kenya Certificate of Secondary Education

## 232/1 - <br> PHYSICS <br> - Paper 1

June 2022-2 hours

Name .Adm No......

Class

## Date

INSTRUCTIONS TO THE CANDIDATES:

- Write your Name, Admission Number and Class in the spaees provided above.
- Answer all the questions both in section $\boldsymbol{A}$ and $\boldsymbol{B}$ in the spaces provided below each question
- All workings must be clearly shown; marks may besawarded for correct steps even if the answers are wrong.
- Let $g=10 \mathrm{~m} / \mathrm{s}^{2}$

For Examiner's Use

| SECTION | QUESTION | MAXIMUM SCORE | CANDIDATE'S SCORE |
| :---: | :---: | :---: | :---: |
| A | 1-10 | 25 |  |
| B | 11 | 09 |  |
|  | 12 | 14 |  |
|  | $13 e^{\text {e }}$ | 11 |  |
|  | 14 | 10 |  |
|  | 15 | 11 |  |
| TOTAL |  | 80 |  |

This paper consists of 11 printed pages. Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing

## SECTION A 25 MARKS: Attempt all the questions in this section

1. The figure below shows a piece of metal stuck in a hollow glass pipe. .Explain how temperature change may be used to separate them (2mark)

2. Form four students were playing football game during which the ball got deflated. Explain what happened to its density
(2marks)
3. Micrometer screw gauge $A$ has a zero error of $-\mathbf{x}$ min. Micrometer screw gauge $B$ has a zero error of $\mathbf{x ~ m m}$ When used to measure the diameter of a tube the difference between their readings is 0.04 mm . If the actual diameter of the tube is 5.56 mm determinex hence state the reading of micrometer screw gauge A(3 marks)
4. A car of mass 1000 kg travelling at a constant velocity of $40 \mathrm{~m} / \mathrm{s}$ collides with a stationary metak block of mass 800 kg . The impact takes 3 s before the two move together. Determine the impulsive force (3marks)
5. The figure below shows a drop of water about to fall from a pipette and after falling. Explain why the shapes of the drop are different (2 marks)

6. Figure shows a liquid manometer. The gas pressure is 755 mmHg and that of the surround is 760 mmHg . The height h is 80 mm . Determine the density of the liquid. (Take density of mercury $=13600 \mathrm{kgm}^{-3}$ and $g=10 \mathrm{Nkg}^{-1}$ ) (3 marks)

7. A student balances a $V$ - shaped uniform wire on a tight string as shown in $A$ and $B$. With reason state the one which is easier to do (2marks)

8. The figure below shows a Bunsen burner. Explain how air is drawn into the burner when the gas tap is opened. (2marks)

9. The figure shows a uniform metal bar of length 10 m and weight $\mathrm{W}=200 \mathrm{~N}$ held at equilibrium by a light chain fixed at the cog and tethered on the floor using a light chain. Determine the tension of the chain (3marks)

10. A student set up the apparatus as shown below. The boiling tube was heated in the middle as shown

a. State the role of the lead shot in the experiment (1mark)
b. With reason, state the wax that will melt first (2marks)

## SECTION B 55 MARKS: Attempt all the questions in this section

11. Marble A is projected horizontally from the top of a cliff at a velocity of $50 \mathrm{~m} / \mathrm{s}$. The height of the cliff from its foot is 31.25 m . At the same time another marble B is projected horizontally from the same point. The figure below shows the trajectories taken by the marbles


Determine
a. The distance of marble A from the foot of the cliff as it hits the ground (3marks)
b. Vertical velocity of marble A as it hits the ground
(2marks)
c. Horizontal velocity of marble B as it hits the ground (2marks)
d. The shortest distance between the marbles upon hitting the ground (2marks)
12. The figure below shows two identical light springsand other apparatus used in an experiment


After the data was collected the following graph was obtained

a. State two measurements taken in the experiment (2mark)
b. Explain how the measurements can be used to come up with the graph (2marks)
c. Explain the graph in sections
i. $\quad \mathrm{AB}$
(2marks)
ii. $\quad \mathrm{CD}$
d. Determine the spring constant of each spring
e. Determine the work done in section $C D$
f. On the same axes sketch the graph expected when the experiment is repeated using one of the springs only
13. The figure below shows an inclined plane on which a trolley of mass 30 kg is pulled up a slope by a force of 100 N , parallel to the slope. The trolley moves so that its centre of mass travels from points A to B.

(i) Determined the work done on the trolley against the gravitational force in moving from $\mathbf{A}$ to $\mathbf{B}$.
(2 marks)
(ii) Determine the work done by the force in moving the trolley from $\mathbf{A}$ to $\mathbf{B}$. (3 marks)
(iii) Determine the percentage of the work input that goes to waste
(iii) Determine the frictional force.
(v) Determine the mechanical advantage of the system.
(vi) Find the velocity ratio
14. a. The figure below shows a set-up that can be used to determine the specific heat capacity of a metal block.

I) Other than temperature and current, state two measurements that should be taken in the experiment to determine the specific heat capacity of the block.(2marks)
II) Describe how the method can be used to determine the specific heat capacity of the metal block. (3marks)
III) State the purpose of oil in the set-up. (1mark)
(ii) A well lagged copper can together with a copper stirrer of total heat capacity $60 \mathrm{JK}^{-1}$ contains 200 g of water at $20^{\circ} \mathrm{C}$. Dry steam at $100^{\circ} \mathrm{C}$ is passed in while the water is stirred until the content reach a temperature of $50^{\circ} \mathrm{C}$. Determine the mass of condensed steam. (Specific latent heat of vaporization of water is $2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$ and specific heat capacity of water is 4200 J/kgK)(4marks)
15. a) A uniform metal strip is 3.0 cm wide 0.6 cm thick and 100 cm long. The density of the metal is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$.
I. Determine the weight of the metal strip. (2marks)

The strip is used to support two masses in equilibrium by $a p p l y i n g$ force $F$ as shown below.

II. Determine the value of $F$
III. Determine reaction R due to the pivot (2 marks)
b) The Figure belowshows a set up that may be used to verify a gas law.

I. State the law being verified
II. State two functions of the concentrated Sulphuric acid in the experiment (2marks)?
III. State one assumption in the experiment
(1mark)

THIS IS THE LAST PRINTED PAGE

