Name \qquad Adm No \qquad
Class \qquad Date. \qquad .Student's signature \qquad
232/3
PHYSICS
Paper 3
JUNE 2022
Time $\mathbf{2}^{1 / 2} \mathbf{2}$ HOURS

BUNAMFAN CLUSTER EXAMS 2022

Kenya Certificate of Secondary Education (K.C.S.E)
Paper 3(232/3)
(Practical)
INSTRUCTIONS TO CANDIDATES

1. Write your name, index number, class, date and signature in the spaces provided above.
2. This paper consists of two questions $\mathbf{1}$ and $\mathbf{2}$.
3. Answer all questions in the spaces provided.
4. Non-programmable calculators and mathematical tables may be used.
5. Show all your workings.

QUESTION 1	a	d	e	f	g	h	k	TOTAL
Maximum score	$1 / 2$ e^{2}	$1^{1 / 2}$	1	$31 / 2$	2	$61 / 2$	5	20
Candidates score								

QUESTION 2	c	d	e	f	i	j	k	I	TOTAL
Maximum score	1	1	2	1	2	1	2	4	20
Candidates score									

This paper consists of 10 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

QUESTION 1

PART A

You are provided with the following:
-A watch glass
-A piece of plasticine
-A marble
-A Stopwatch
-An electronic balance (to be shared)

- Vernier calipers (to be shared)
- Geometrical set

Proceed as follows:
(a) Measure the mass, \mathbf{m} of the marble.
 g
b) Place the watch glass on the table. Cut the plasticine into two pieces and use them to hold the watch glass firmly on the table as shown in Figure 1.
c). Release the marble from one end of theowatch glass and time 5 complete oscillation with the stopwatch. Repeat this one more time,

Figure 1
d) Record your values in the Table 1

	Time for 5 oscillations (seconds)	Periodic time, T(s)
1	$\mathbf{4 . 0 5}$	0.8100
2	$\mathbf{4 . 0 2}$	0.8040

	Range (3.50-4.50) 2dp amust @1/2 mk	Correct evaluation to 3sf all1/2mk

Table 1

e) Find the average periodic time \mathbf{T}
-principle of averaging must be shown $1 / 2 \mathrm{mk}$
-Correct evaluation to at least 4 s.f or Exact $1 / 2 m k$ -ignore units
f) (i)Measure the diameter of the marble with the Vernier calipers, hence find its radius

Diameter, $\mathrm{d}=\ldots 1.60 \mathrm{~cm}+0.50 \ldots$
1d.p
If missing units deny $\quad 1 / 2 m k$

Radius, $\mathbf{r}=\ldots \mathbf{0 . 0 0 8 2 5 m}$
(ii) Determine the volume of the marble given that $V^{\frac{4}{2}}-\frac{4}{3} r^{3}$ where $\pi=3.142 \quad$ (1mark)
-Correct substitution
-Correct evaluation to 4 s.f or Exact -ignore units
(iii)Calculate the radius of the curvature of the watch glass R from the formula $\mathrm{R}-\mathrm{r}=\frac{5 g T^{2}}{7(2 \pi)^{2}}$

Where $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\pi=3.142$

- Correct substitution $1 / 2 m k$
- Correct evaluationǧto 4 s.f or Exact 1⁄2mk
- Ignore units

PART B

You are provided with the following:

- A glass prism
- A plain sheet of paper
- A soft board
- 4 optical pins
- 2 Thumb tacks

Proceed as follows:
g) (i)Firmly fix the plain sheet of paper on the soft board using the thumb tacks and place the prism near the centre of the paper. Trace the outline of the prism using a pencil.
(ii)Remove the prism from the outline and label the vertices of the outline L, M and N as shown in Figure 2

Figure 2

Measure Angle LMN and length, l using a ruler

Angle LMN $=60^{0}+\ldots 1^{0} .$. Whole number
Length, $l=. . .3 .8 \mathrm{~cm}+0.2 \mathrm{~cm} . .$.
(1mark)
(1mark)

If missing units deny $\quad 1 / 2 m k$
If wrong units Penalize $\quad 1 / 2 m k$
iii) On the side ML mark a point Gand draw the normal at that point. Measure an angle T, 60° from the line LM and draw adirie along this angle as shown in Figure 3.

Figure 3
iv). Replace the prism on the outline and fix pins P_{1} and P_{2} on the 60° line at a distance of 3 cm from each other. View the images of the pins P_{1} and P_{2} through side MN and fix P_{3} and P_{4} so that they appear to be on straight line with the images of P_{1} and P_{2}.
v). Remove the prism and the pins and draw a line to pass through the holes made by pins P_{3} and
P_{4}. Extend the line into the outline as shown in figure 3 above. Also extend the 60° line so that the two lines cross each other at point O. Determine angle D and record it in the Table 2 h). (i)Repeat the procedure and complete the Table 2
($2^{1} / 2$ marks)

Angle $T\left(^{\circ}\right)$	60°	50°	40°		
Angle $D\left(^{\circ}\right)$	47^{0}	40^{0}	39^{0}	Whole number $\pm \mathbf{1 @}^{1} / 2 \mathrm{mk}$	
Angle $I^{\circ}\left(90^{\circ}-T\right)$	13^{0}	10^{0}	1^{0}	Exact subtraction all 1mk	

Table 2
(ii) Determine the average value D_{m} of D

- Principle of averaging must be shown $1 / 2 \mathrm{mk}$
- Correct evaluation to 4 s.f or Exact $1 / 2$ mk
- Ignore units
iii) Determine the constant \boldsymbol{k} for the glass prism from the formula

$$
k=\frac{\sin \left(\frac{A+D_{m}}{2}\right)}{\sin \frac{A}{2}}
$$

$\begin{array}{ll}\text { - Correct substitution } & 1 m k \\ \text { - Correct evaluation to } 4 \text { s.f or Exact } & 1 m k\end{array}$
($k=1.5$)
iv) State the significance of \boldsymbol{k}

PART C

You are provided with the following:

- A lens holder
- Convex lens
- A candle
- A screen
- A metre rule

Proceed as follows:
Set up the apparatus as shown in Figure 4

Figure 4
(i) Starting with $u=30 \mathrm{~cm}$, adjust the position of the screen to obtain a sharp image of the candle flame. Record the value of v in Table 3.
(j)(i) Repeat the procedure in (g) for $\mathrm{u}=30 \mathrm{~cm}$. Complete Table 3 (3marks)

u (cm)	v (cm) co	$\mathrm{m}=\frac{v}{u}$
30	30.0 c	1
50	21.5	0.43
	1d.p ± 2.0 @1 mk	Correct evaluation to 4 s.f or exact all 1mk

Table 3
(ii) Given that the focal length f of the lens satisfies the equation $\mathrm{f}=\frac{v}{m+1}$, determine the average value of the focal length, f.

- Principle of averaging must be shown
- Correct evaluation to 4 s.f or Exact

1mk

- Ignore units
$1 m k$

QUESTION 2

You are provided with the following:

- An ammeter ($\mathbf{0}$ - $\mathbf{1}$ A)
- A voltmeter ($\mathbf{0}-\mathbf{3} \mathbf{V}$ or $\mathbf{0}-\mathbf{5} \mathbf{V}$)
- A variable resistor
- A 10Ω carbon resistor
- A piece of resistance wire
- Two new dry cells
- A cell holder
- A switch
- Seven connecting wires

Proceed as follows:
a) Take the resistant wire and coil it around the biro pen to make a coil.
b) Set up the apparatus as shown below such that the $\mathbf{1 0 \Omega}$ carbon resistor and the coil are in parallel connection.

c) Close the switchand the adjust the variable resistor such that the ammeter read a current of
0.08A and record the corresponding voltmeter reading $\mathbf{V}_{\mathbf{1}}$
i) $\mathrm{V}_{1}=\ldots \mathbf{0 . 3 5} \mathrm{V}+\mathbf{0 . 1 0 \mathrm { V }}$. at least 1d.p
ii) Calculate total external resistance $\mathbf{R}_{\mathbf{1}}=\frac{\mathbf{V}_{\mathbf{1}}}{\mathbf{I}}$

Correct substitution
Correct evaluation to 4 s.f or exact $1 / 2 m k$ If missing unit deny $\quad 1 / 2 m k$ If wrong units Penalize $\quad 1 / 2 m k$
d) Repeat (c) above for current of $\mathbf{0 . 1 6 A}$ and record the corresponding voltmeter reading $\mathbf{V}_{\mathbf{2}}$
i) $\mathbf{V}_{2}=$ $. . . .70 .70 \mathrm{~V}+\mathbf{0 . 1 0 \mathrm { V }}$ at least 1d.p
ii) Calculate total external resistance $\mathbf{R}_{2}=\frac{\mathbf{V}_{2}}{\mathbf{I}}$

Correct substitution $1 / 2 m k$
Correct evaluation to 4s.f or exact
$1 / 2 m k$
If missing unit deny $\quad 1 / 2 m k$
If wrong units Penalize $\quad 1 / 2 m k$
e) Find the average value of total external resistance \mathbf{R}

Principle of averaging shown
 $1 / 2 m k$
 Correct evaluation to 4s.f or exact
 $1 / 2 m k$
 If missing unit deny $1 / 2 m k$
 If wrong units Penalize $\quad 1 / 2 m k$
 f) Determine the resistance, \mathbf{C} of the coil

Application of the formula $\frac{1}{\mathrm{R}}=\frac{1}{10}+\frac{1}{\mathrm{C}} \quad$ or $\quad \mathrm{R}=\frac{10 \mathrm{C}}{10+\mathrm{C}} \quad 1 \mathrm{mk}$

Correct evaluation of C to 4s.f or exact If missing unit deny

1mk
If wrong units Penalize $\quad 1 \mathbf{m k}$
g) Now set up the apparatus as show below such that the voltmeter is connected across the cells, 10Ω carbon resistor and the coil are in parallel connection.

h) Close the switch and the adjust the variable resistor such that the ammeter read a current of $\mathbf{0 . 0 4 A}$ and note the corresponding voltmeter reading. Record the value in the table below.
i) Repeat (g) above for other values of current and voltage and complete the table below

Current, I (A)	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 8}$	$\mathbf{0 . 1 2}$	$\mathbf{0 . 1 6}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 2 4}$
Voltage, V(V)	2.9	2.8	2.7	2.6	2.5	2.4

Each 1 mk to a max of 4 correct values $\pm 0.3 \mathrm{~V}$ at least $1 \mathrm{~d} . \mathrm{p}$ NB: Voltage, V should NOT go beyond 3.0V
(4marks)
j) On the grid provided plot a graph of Voltage, $\mathbf{V} \mathbf{(V)}$ against Current, I (A) \mathbf{c}^{5} (5marks)

k) Determine the slope of the of the graph

Change in y	$1 / 2 m k$
Change in x	$1 / 2 m k$
Correct evaluation to 4 s. f or exact	$1 m k$
If missing unit deny	$1 / 2 m k$
If wrong units Penalize	$1 / 2 m k$

l) Given that graph is related to equation $\mathbf{E}=\mathbf{V}+\mathbf{I r}$ where \mathbf{E} and \mathbf{r} are the emf and internal resistance of the cells respectively. Use your graph to determine the value of:
$\mathrm{E}=\ldots \mathrm{y}$ - intercept.
(1mark)
To be read from the graph, so graph should be extrapolated. If missing unit deny $1 / 2 \mathrm{mk}$
Penalise fully if graph not extrapolated
$\mathbf{r}=. . . .$. Slope..
(1mark)
Ignore sign
If missing unit deny $1 / 2 m k$

