\qquad

KASSU JOINT EXAMINATION JUNE 2022
 Kenya Certificate of Secondary Education PHYSICS PAPER 1

Instructions to Candidates

- Write your name, admission number, class and signature in the spaces provided at the top of the page. This paper consists of two sections; \boldsymbol{A} and \boldsymbol{B}.
- Answer ALL the questions in the spaces provided.
- Mathematical tables and electronic calculator may be used.
- All working MUST be clearly shown.
- This paper consists of $\mathbf{1 1}$ printed pages.
- Candidates should answer the questions in English and check to ensure that no questions) is missing.

FOR EXAMINERS USE ONLY

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATES SCORE
A	$1-10$	25	
B	12	10	
	13	11	
	14	13	
	15	09	
	16	07	
	11		05

SECTION A (25 MARKS)

Attempt all the questions in the spaces provided.

1. Define mechanics as used in Physics Study of of motion......... of
bodies under the

2. The mass of an empty density bottle is 15 g and 60 g when full of oil of density $0.8 \mathrm{gcm}^{-3}$. Determine volume of water that would fill the density bottle completely.

(3marks)
3. Give the molecular explanation of surface tension

 hove fewer molecules on on on force.
net (n word force causing tension na 4. The diagram below shows a flask with common salt and water. The adjacent diagram shows the same flask after it has been shaken and the salt has dissolved.
State the purpose of experiment and explain what is observed.

The experiment shows that', matter is made tiny mat particles/matter is particulate/ volume of leonid is not constituent.
b) A drop of milk when carefully put in a glass of water turns the water white after

5. The figure below shows two glasses of different thickness

(1mark)

Hot water was poured in both glasses. State and explain what observed. (2 marks)

6. Tho reach outer.i.i.ints. uniform layer of candle wax

a) State and explain the observation after the switch is closed.
(2marks)

b) What observable changes would be made is water was replaced with mercury. ($1 m k$)

All the wax on the test tube will melt off with a shorter time than that of water
8. The figure below shows two light sheets of paper arranged as
 shown.

Explain the observation made when air is blown the same speed at the same time at point A and B.
Paper move apart. decrease in velocity at A and B causes decrease pressure. The greater the atmospheric pressure in between
9. The figure below shows a gash of Force against extension of two springs made from different materials ${ }^{\text {? }}$

a) Compare the spring constants of the springs above

b) State two ways in which the spring constant can @2022KASSUJoint Examination Physics P1 be increased

- less number of turns per unit length
- Smaller diameter of the spring
- Larger diameter of the wire used \checkmark
- Smaller length of the spring.

SECTION B (55 MARKS)

Attempt all the questions in the spaces provided.

11. a) The figure below shows part of a scale of a vernier caliper with an error of 0.03 cm . What is the actual reading?

b) In an experiment to estimate the thickness of an oil drop of diameter 0.1 cm spread onto a circular patch of diameter 10 cm .

ii) Calculate the area covered by the oil patch \qquad
 \qquad

e assumption $6.67 \times 10 \mathrm{~cm}$
iv) State one assumptions made in clii) above
v) State one possible sources of errors in this experiment
12. 23 State Pascal's Principle of transmission of pressure in liquids equally to all other parts of................nclosed liquid.
b) The figure below shows an instrument used to measure atmospheric pressure State with a reason the modification that would be required in a similar set-up if mercury was to be replaced with water
(2marks)

A longer tube would be required

c) The barometric height of a town is 640 mmHg . Givefothat the standard atmospheric pressure is 70 cmHg and density of ffercury is $13.6 \mathrm{gcm}^{-3}$, determine the altitude of the town in metres (density of air $1.3 \mathrm{kgm}^{3}$)
(3marks)

$$
\begin{aligned}
& h f g=h p 9 \\
& \frac{6}{100} \times+3600 \times 10=h \times 1 \cdot 3 \times 10
\end{aligned}
$$

$h=\frac{816}{}$
c) i) State two factors that affect the moment of a force
ii) An aluminum beam 5.0 m long and whose mass is 200 g is suspended by a steel cable from a concrete beam and pivoted on a stool pole as shown below

Calculate the tension T in the steel cable

13. a) Define displacement and state its SI Unit

SI unit metre (m)
b) A body is projected horizontally at a velocity of $120 \mathrm{cms}^{-1}$ from a cliff 90 m tall

Draw a displacement-time graph to show the motion

c) Calculate
i) The time taken to hit the ground

ii) The horizontal range.

$$
\begin{aligned}
& R=u t \\
& R=120 \times 4.25 \\
& R=508.8 \mathrm{~m}
\end{aligned}
$$

d) A stone is whirled with a uniform speed in horizontal circle having a radius of 12 cm . It takes the stone 9 seconds to describe an arc of length 6 cm . Calculate:
I. The angular velocity
(2marks)
II. Linear velocity of the stone

$$
\begin{aligned}
V & =0 r \\
V & =0.05556 \times \frac{12}{1.0} \\
V & =0.006667 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

III. Its periodic time T

$$
\begin{aligned}
& \text { I. Its periodic time } T \\
& I \quad=\frac{2 \pi}{6} \\
& \cdots=\frac{2 \times 3 \cdot 42}{0.0 .5556} \\
& \cdots
\end{aligned}
$$

- 14. (a) State Newton's $2^{\text {nd }}$ Law of Motion The law states Hat the rate of change (1mark) of momentum of a body jo directly Proportional to the resultantaforcen an on takes place \sqrt{n}. The direction (b) Abusforce
(b) A bus of mass $20^{\circ} 00 \mathrm{~kg}$ initially moving at $20 \mathrm{~ms}^{-1}$ is brought to rest over a distance of 40 m . Determ@ne the force required to achieve this.
(3marks)

(c) A mason uses six wheel pulley system to raise stones to a storey building for construction. He raises a weight of 3000 N through a vertical height of 5 m using the machine. If the mason pulls using an effort of 500 N, calculate;
i) The velocity ratio of the pulley system.
ii) The work done by the mason.

Distance. Moved by the effort $=5-\mathrm{m} \times 6=30 \mathrm{M}$. 1 Work done $=$ Effort \times Effort distance $=500 \times 30=15,000 \mathrm{I}$
iii) The useful work done by the pulley system.

$$
=5 \times 3000
$$

$$
=15,000 \mathrm{~J}
$$

15. (a) State two ways in which the melting point of a substances can be raised(2marks)
 -the Pressure - Adding of impurities
(b)A 200 g mass of ice at $-20^{\circ} \mathrm{C}$ was slowly heated by an element heater of power 30 W . The figure below shows the graph of temperature against time.

Use the values given below to calculate the time in minutes corresponding to;
i) The line QR in the graph (specific latent heat of fusion is $357000 \mathrm{Jkg}-1$) (3marks)
.... $P_{t}=m L_{f}$
$\frac{30 \times t}{30}=\frac{0.357000}{30}$
@2022 KASSU Joint Examination

$$
t=2380 \mathrm{~s} \text { Physics } 1
$$

* ii) The line RS in the graph Ta label the ion axes with -suitable values andunits (specific heat capacity of water is $421050 \mathrm{Jkg}-1 \mathrm{k}-1$)
(1mark)

c) Calculate the specific heat capacity of ice
(1mark)

16. a) State the law of floatation.

A flowating object displaces its own weight on the fluid in which it floater on.
b) A solid of mass 100 g and density $2.5 \mathrm{~g} / \mathrm{cm}^{3}$ weighs 0.5 N when totally submerged in a liquid. Determine the density of the liquid.
 upright in water. Explain what happens after the can nl (2marks)

As Candle burns, its weight reduces hence weight displaced reducer(upttmust

- reduce

THIS IS THE LAST PRINTED PAGE

