233/1

CHEMISTRY

PAPER 2

THEORY

TIME - 2HRS

SUKELLEMO PRE MOCK JOINT EXAMS

Pre Mock Examination
JUNE 2022

MARKING SCHEMES

a)i) To remove dust particles√ - than would otherwise "poison" that catalyst (1mk) ii) 9 atmospheres $\sqrt{1}$ (1mk) iii) To pre heat NH₃ and air to an optimum temperature (reactants)√ To cool No (product) $\sqrt{}$ (2mks)

iv) Platinum –Rhodium catalyst √ (1mk)

v) I :
$$4NH_{3(g)} + 50_{2(g)} \longrightarrow 4NO_{(g)} + 6H_{2}O_{(g)} \sqrt{1}$$
 (1mk)

v) I :
$$4NH_{3(g)} + 5O_{2(g)}$$
 \longrightarrow $4NO_{(g)} + 6H_{2}O_{(g)} \vee_{1}$ (1mk)
II : $2NO_{(g)} + O_{2(g)}$ \longrightarrow $2NO_{2(g)}\vee_{1}$ (1mk)

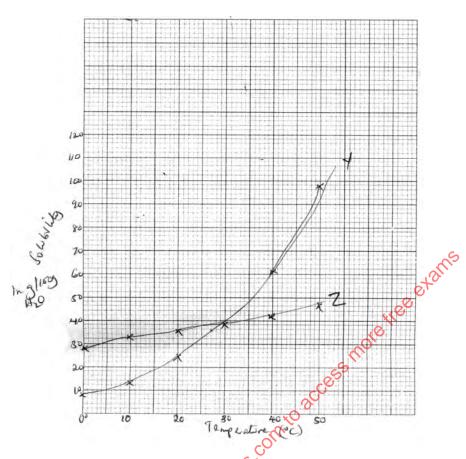
III $4NO_{2(g)} + O_{2(g)} + 2H_2O_{(l)}$ 4 HNO_{3(aq)}

b)i) 2NaNO_{3(S)} $2NaNO_{2(g)} + O_{2(g)}\sqrt{}$ $NaNO_3 = 23 + 14 + 48 = 85$ Moles of NaNO₃ = $21.25\sqrt{\frac{1}{2}}$ (3mks)

Moles of $O_2 \Rightarrow \frac{1}{2} \times 0.25$ $= 0.125 \sqrt{\frac{1}{2}}$ Volume of $O_2 \Rightarrow 09.125 \times 22.4$

 $= 2.8 dm^3$ $V = 280 \text{ cm}^3$

ii) Manufacture of fertilizers√


Manufacture of explosives√

Manufacture dyes and drugs $\sqrt{}$ (2mks)

Purification of metals eg.silver and gold

Etching designs on some metals

- (a) this is the maximum mass of salt/solute that can saturate 100g of water at a given temperature.
 - (b)

- (c) (i) 30g of H₂O Accept 36g/100g water
 - (ii) 33.5°C
- (d) (i) Sol at $40 \text{oC} = 61 \text{g}/100 \text{g} \text{ H}_2\text{O}$ At 27°C
 - (ii) Sol at $40\%C = 61g/100g H_2O$ Sol at $27^{\circ}C = 35g/100g H_2O$ Sol at $5^{\circ}C = 10g/100g$ of H_2O
- (e) Y is more soluble than Z.

Y dissolves better at higher temperatures than Z

(f) Fractional crystallization – Separation of mixtures with different solubilities

3. (i) I: $Zn(OH)_2$ (a)

ZnCl₂ II:

 $\sqrt{1}$ III: ZnO

- $Pb_{(aq)}^{2+} + 2Cl_{(aq)}^{-} \rightarrow PbCl_{2(S)}^{-} \checkmark 1$ (ii)
- White precipitate soluble in excess. $\sqrt{1}$ (iii)
- Ammonia gas is polar and ionizes $\sqrt{1}$ in water which is polar. (b) While it does not ionize in methylbenzene which is non polar.
- Calcium carbonate/magnesium carbonate. (c) (i)
- nitric (!)

 Nicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free Acces e pastpapers com to acces s more free extant

 Vicit unum free acces e pastpapers com to acces s more free extant

 Vicit unum free extension of the company o (ii) Passing a solution of dilute hydrochloric acid or nitric (V) acid
- $[Zn(OH)_4]^{2-}$ (d)

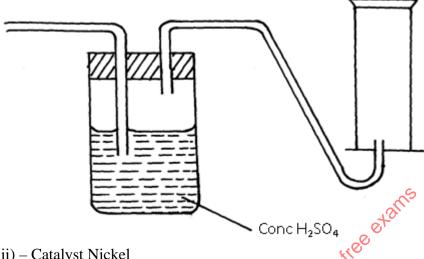
4a

- Hygroscopy
- ii) Deliquescence
- iii) Efflorescence

b) i)
$$\left(\text{Zn(OH)4} \right)^{2-\sqrt{1}} \text{mk}$$
 ii) $\left(\text{Cu(OH)4} \right)^{2-\sqrt{1}} \sqrt{1}$

ii)
$$\left(\text{Cu(OH)}_4\right)^{2}\sqrt{1}$$

	Fe	S	O	H ₂ O		
	20.2	11.5	23.0	45.3		
	<i>5.6</i>	22	1.6	10		
	56	32	16	18		
	0.36	0.36	1.44	2.52√1mk		
	0.30	0.50	1.44	2.32 · THK		
	1	1	4	7		
				ams		
	(FeSO ₄ .7H ₂ O)=278					
	278n=278					
	n=1√1mk					
Formula FeSO ₄ .7H ₂ O√1mk						
es.						
$des \frac{6.95}{278} = 0.025 moles \sqrt{1mk}$						
278						
(FeSO _{4.7H₂O)=278 278n=278 $n=1 \checkmark 1mk$ Formula FeSO_{4.7H₂O$\checkmark 1mk$ Oles $\frac{6.95}{278} = 0.025 moles \checkmark 1mk$ $0.025 moles - 250 cm^3$}}						
cor,						
	1000					
	0.025*1000 25					
	$\frac{0.025x1000}{250} = \frac{25}{250} = 0.1 \text{mole/litre} $ \sqrt{1mk}					
	200					
exess lead carbonate to dilute HNO₃, ✓ 1mk						
e and filter to remove unreacted carbonate √1/2mk						
excess dilute HCl to the mixture √1/2mk						
to obtain lead(II) chloride as the residue $\sqrt{1/2}$ mk						
	nd Day between f			. /1/1-		


ii) No. of moles
$$\frac{6.95}{278} = 0.025 moles \sqrt{1} mk$$

$$\frac{0.025x1000}{250} = \frac{25}{250} = 0.1 \text{mole/litre}$$
 \(\sqrt{1}\text{mk}

d)

- Add exess lead carbonate to dilute HNO₃, ✓ 1mk
- shake and filter to remove unreacted carbonate $\sqrt{1/2}$ mk
- Add excess dilute HCl to the mixture $\sqrt{\frac{1}{2}}$ mk
- Filter to obtain lead(II) chloride as the residue $\sqrt{1/2}$ mk
- Rinse and Dry between filter paper to obtain solid PbCl₂√¹/₂mk

5. i)

- ii) Catalyst Nickel
- Temperature 150°C to 250°C
- iii) magnesium is very expensive

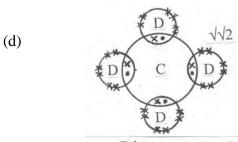
it gives a mixture of gases including bad smelling and poisonous hydrogen

sulphide

CuSO₄. 5H₂O

- v) Manufacture of ammonia
- Manufacture of hydrochloric acid
- Welding and cutting of metals
- Rocket fuel and in fuel cells.
- i) Slowly to allow ample time for reaction repeatedly to ensure all active air b) (oxygen) is used up
 - ii) The brown copper turnings slowly changed black.

iii)
$$\frac{120 - 95.5}{120} \times 100$$


$$\frac{24.5}{120} \times 100 = 20.41667\%$$

 $B-2:8\sqrt{\frac{1}{2}}$ 6. (a)

 $D-2:8:8\sqrt{\frac{1}{2}}$

(i) D $\sqrt{\frac{1}{2}}$ (b)

(c) Atomic radius of B is larger $\sqrt{1}$ than that of C. C has more protons. The outer energy level electrons are pulled $\sqrt{1}$ strongly to the nucleus reducing the atomic size.

(e) Element B has stronger metallic √1 bond (has more delocalized electrons) than

(e) Element B has stronger metallic $\sqrt{1}$ bond (has more delocalized electrons) than A, hence higher amount of heat $\sqrt{1}$ energy is needed to break the bond.

(f) $2A_{(s)} + 2H_2O_{(1)}$ \longrightarrow $2AOH_{(aq)} + H_{2(g)}\sqrt{1}$

- Reject fully if unbalanced
- Award 1/2 mk if states are missing or any one state is wrong.
- (g) Add water $\sqrt{\frac{1}{2}}$ to the mixture and stir.

Filter $\sqrt{\frac{1}{2}}$ to obtain lead (II) sulphate as $\sqrt{\frac{1}{2}}$ residue and sulphate of E as filtrate Dry the residue $\sqrt{\frac{1}{2}}$ to obtain lead (II) sulphate.

Evaporate $\sqrt{\frac{1}{2}}$ the filtrate to dryness $\sqrt{\frac{1}{2}}$ to obtain the solid sulphate of E.

- a) Ethylpropanoate
- b) But-2,3-diene

b) i) A - yeast $\sqrt{1}$		(1mk)
I - fractional distillation		(1mk)
B - Sodium ethoxide		(1mk)
C - Hydrogen		(1mk)
D - Ethene		(1mk)
E – polyethene / polythene		(1mk)
	(4mks)	
iii) I : $C_6H_{12}O_6 \rightarrow 2C_2H_5O + 2CO_2 \checkmark$		(1mk)
144000		
$mole of sugar \frac{144000}{180} = 800 moles$		
100		G
$moles of ethanol = \langle 2x800 \rangle$		axams
=1600 moles		8
II	(2ml)	
11	(3)(4):	5)
$nfm \rightarrow 2x12 + 6 + 16 = 46$	- Me	
$moleofsugar \frac{144000}{180} = 800 moles$ $molesofethanol = \2x800$ $= 1600 moles$ II $nfm \rightarrow 2x12 + 6 + 16 = 46$ $massofethanol = \frac{46x1600}{1000}$ $= 73.6kg$ $iisit www.ireelecsee.$	*O	
_ 72 6kg	all	
=73.6kg		
	ers	
~C	100 m	
and the second s		
E O C		
ACC S		
, (O		
M.		
m		
is it is a second of the secon		