Name \qquad Adm No.

Class
233/3

CHEMISTRY

Paper 3

JUNE 2022
Time: $\mathbf{2 1 / 4}$ Hours

SUKELLEMO
 FORM 4
 CHEMISTRY PRACTLEAL

INSTRUCTIONS

* Write your name and the indicated details in the spages provided on this page.
* Answer ALL questions in the spaces provided in the question paper.
* You are NOT allowed to start working with the apparatus for the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper. This timeqis to enable you to read the question paper and make sure you have all the chemicals and ap@aratus you may need.
* Mathematical tables and silent electronic calculators may be used.
* All working must be clearly shown where necessary.

For Examiner's Use Only

Question	Maximum score	Candidate's score
1	21	
2	10	
3	9	
Total score	$\mathbf{4 0}$	

This paper has 8 printed pages. Candidates should check the question paper to ascertain that $\underline{\text { ALL }}$ pages are printed as indicated and that no questions are missing.

QUESTION 1

You are provided with:

- 6.0 g of an alkanoic acid labelled solid \mathbf{P} in a boiling tube.
- 2 M sodium hydroxide solution labelled solution \mathbf{Q}.

You are required to:

(a) Determine the solubility of solid \mathbf{P} at different temperatures.
(b) Determine the number of moles of water of crystallization in solid \mathbf{P}.
(c) Find the molar mass of the alkanoic acid.

Procedure I

i) Using a burette add $10 \mathrm{~cm}^{3}$ of distilled water to the solid \mathbf{P} in the boiling tube. Heat the mixture while stirring with a thermometer to about $70^{\circ} \mathrm{C}$. When the entire solid has dissolved allow the solution to cool while stirring with the thermometer. Note the temperature at which crystals of solid \mathbf{P} first appear. Record this temperature in the Table I below.
ii) Using the burette add $2 \mathrm{~cm}^{3}$ of distilled water to the contents of the boiling tube. Warm the mixture, while stirring with the thermometer until all the solid dissolves. Allow the mixture to cool while stirring. Note the temperature at which the crystals of solid \mathbf{P} first appear.
iii) Repeat the procedure (ii) two more times and record the temperatures in Table I. Retain the contents of the boiling tube for use in procedure II.

TABLE I

Volume of water in the boiling tube $\left(\mathbf{c m}^{3}\right)$	Temperature at which crystals of solid \mathbf{P}^{\prime} first appear $\left({ }^{\circ} \mathbf{C}\right)$	Solubility of Solid P $\left(\mathbf{g} / \mathbf{1 0 0 g \mathbf { g H } _ { 2 } \mathrm { O })}\right.$
	$e^{e^{-}}$	

a) i) Complete Table $\mathbf{1}$ by calculating the solubility of solid \mathbf{P} at different temperatures (6 mks)
ii) On the grid provided, plot a graph of the solubility of solid P (vertical axis) against temperature. (3 mks)

iii) Using the graph determine the temperature at which 55 g of solid P would dissolve in $100 \mathrm{~cm}^{3}$ of water. (1 mk)

Procedure II

i) Transfer the contents of the boiling tube in Procedure I into a 250 ml volumetric flask. Rinse both the boiling tube and the thermometer with distilled water and add to the volumetric flask. Add more distilled water to make up to the mark. Transfer the solution to a 250 ml beaker , Label this solution \mathbf{R}. Wash the volumetric flask then rinse it with distilled water ready for use in Step(ii).
ii) Using a measuring cylinder place $25.0 \mathrm{~cm}^{3}$ of solution Q into a 250 ml volumetric flask. Add about $200 \mathrm{~cm}^{3}$ of distilled water. Shake well. Add more distilled water to the make up to the mark. Label this solution T.
iii) Fill a burette with solution R. Using a pipette and pipette filler, plafe $25 \mathrm{~cm}^{3}$ of solution \mathbf{T} into a 250 ml conical flask. Add 2-3 drops of phenolphthalein indieator and titrate with solution R. Record your results in table II. Repeat the titration two mere times and complete the table.

TABLE II

Titre	1	2	3
Final burette reading (cm^{3})			
Initial burette reading (cm^{3})			
Volume of solution \mathbf{R} used $\left(\mathrm{cm}^{3} \mathrm{e}^{-}{ }^{-}\right.$			

(4 marks)

DETERMINE:

a) The average volume of solution \mathbf{R} used (1 mk)
b) The concentration of solution \mathbf{T} in moles per litre.
(1 mk)
c) The concentration of alkanoic acid solution \mathbf{R} in moles per litre (1 mole of acid reacts with 2 moles of the base) (2 mks)
d) The relative formula mass of the alkanoic acid, solid $\mathbf{P} \quad(2 \mathrm{mks})$

e) The formula of \mathbf{P} has the form $\mathbf{M} \cdot \mathbf{x H}_{2} \mathbf{O}$. Determine the value of \boldsymbol{x} in the formula. (The relative formula mass of M is $90 ; \mathrm{O}=16 ; \mathrm{H}=1$) (1 m K$\left.)^{\circ}\right)$

QUESTION 2

You are provided with solid Y. Use it to carry out the tests indicated below and record your observations and inferences in the spaces provided.
a) Put half a spatula of solid \mathbf{Y} in a boiling tube. Add about $5 \mathrm{~cm}^{3}$ of distilled water and shake.

Divide the resultant mixture into four portions of $1 \mathrm{~cm}^{3}$ each.

Observations	Inferences		
	$(1 \mathrm{mk})$		

i) To the first portion add aqueous sodium hydroxide dropwise till in excess.

ii) to the second portion add aqueofs ammonia dropwise till in excess

Observations	Inferences	
	$(1 \mathrm{mk})$	

iii) To the third portion add lead (II) nitrate solution and warm.

Observations	Inferences	
	$(1 \mathrm{mk})$	
		$(1 \mathrm{mk})$

iv) To the fourth portion add dilute nitric (V) acid followed by Barium nitrate solution.

Observations	Inferences		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

QUESTION 3

You are provided with solid M and solid F.

Carry out the tests below and write the observations and inference in the spaces below:
a) Using a metallic spatula, ignite about one half of solid \mathbf{M} in a Bunsen burner flame.

Observations	Inferencess		
	$(1 \mathrm{mk})$	0	$(1 \mathrm{mk})$

b) Place the other half of solid \mathbf{M} in a boiling tube. Add $15 \mathrm{~cm}^{3}$ of distilled water and shake well.

Label this solution M. Use this solution for the following tests.
i) Place $2 \mathrm{~cm}^{3}$ of solution \mathbf{M} in test tube and determine pH .

Observations	Inferences	
	$(1 / 2 \mathrm{mk})$	

ii) To about $2 \mathrm{~cm}^{3}$ of the solution \mathbf{M} obtained in (b) above add 3 drops of acidified potassium manganate (VII)

Observations	Inferences		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

iii) To about $2 \mathrm{~cm}^{3}$ of the solution \mathbf{M} obtained in (b) above add 2 drops of bromine water.

Observations	Inferences	
	$(1 \mathrm{mk})$	$(1 \mathrm{mk})$

iv) To the remaining solution \mathbf{M} in the boiling tube, add half of solid \mathbf{N}

