Name:	Adm NoClass
232/3	Candidate's Signature:
PAPER 3	
SEPTEMBER, 2022.	Date:
$2\frac{1}{2}$ hours	

THE MURANG'A EXTRA COUNTY SCHOOLS JOINT EXAMINATIONS (MECS) **PHYSICS PRACTICAL FORM 4**

PAPER 3

 $2\frac{1}{2}$ hours

- (a) Write your name and admission number in the spaces provided.
 (b) Answer ALL questions in the spaces provided in the question paper.
 (c) You are supposed to spend the first 15 minutes of the 2¹/₂ hour of the paper carefully before commencine d'
 (d) Marks are given d (c) You are supposed to spend the first 15 minutes of the $2\frac{1}{2}$ hours allowed for this paper reading the whole
- (d) Marks are given for a clear record of the observations actually made, their suitability, accuracy and the use made of them.
- (e) Candidates are advised to record their observation as soon as they are made.
- (f) Non programmable silent electronic calculators may be used.
- (g) This paper consists of 7 printed pages.
- (h) Candidates should check the questions to ascertain that all the pages are printed as indicated and that no questions are missing.
- (i) Candidates should answer the questions in English.

For Examiner's Use Only

Question 1

	В	d	e	f	g	h	
Maximum Score	1	5	5	3	3	3	
Candidate's Score							

TOTAL	

Question 2

	b	d	e	f	g	h	i	j	k	 	
Maximum Score	1	3	1	3	2	1	3	4	2	TOTAL	
Candidate's Score											

You are provided with the following:

- 2 new dry cells size D.
- A cell holder. •
- A switch. •
- An ammeter (0 1A)
- A voltmeter (0 5V)
- 6 connecting wires, 3 with crocodile clips. •
- Nichrome wire mounted on the metre rule labelled X. •
- A micrometer screw gauge (to be shared). •

Proceed as follows:

Connect the circuit as shown in the figure below. (a)

S

Measure the voltage, E before closing the switch. (b)

- Adjust the length L of the wire 0.2m, close the switch S and read the value of current and record (c) in the table below.
- Repeat the procedure in (c) above for the value of length, L and fill the table for $\frac{1}{L}$. (d) (5mks)

Length (m)	0.2	0.3	0.4	0.5	0.6	0.7
Current I(A)						
$\frac{1}{I}(A^{-1})$						

(g) (i) Measure the diameter of the wire in three points using micrometer screw gauge. (1mk)

 $d_1 = \dots \qquad d_2 = \dots \qquad d_3 = \dots$

QUESTION 2

PART A

a) You are provided with the following:

Triangular glass prism

Four optical pins	Thermometer
250 ml beaker	Plain paper
Soft board	Stopwatch
source of boiling water	Four office pins

Proceed as follows

- a) Fix the plain paper on the soft board using the office pins.
- b) On the plain paper, draw line XY. Mark a point M on its midpoint. Draw a normal N at M to XY. Draw line RM such that angle RMN = 50° . (1mk)

(This paper will be collected at the end of the experiment)

Breekcsepastpar N 0 4100 0 R-J d P1 12 NOTE A P₄ C N Eye X

- c) Place the glass prism such that one edge AB of the prism is in line with XY. Accurately draw the outline ABC of the prism
- d) Place optical pins P_1 and P_2 on the line RM
- c) Through edge BC observe the images of P₁ and P₂. Fix P₃ and P₄ so that P₁, P₂, P₃ and P₄ lie on straight line.

- d) Remove the pins; construct straight line from P_4 through P_3 to meet side BC at D, join M to D. Measure angle r_1 . i) (1mk) $\mathbf{r}_1 = \dots$ ii) Produce **P**₄**P**₃ to meet RM produced. Measure angle **d**. (1mk)f) Given that $\mathbf{n} = \frac{\sin(\frac{R+d}{2})}{\sin(\frac{R}{2})}$, find the value of \mathbf{n} . d..... (1mk)(1mk) (3mks) (2mks)
 - h) What Physical property does **n** represent?

(1mk)

(1mk)

PART B

(Read all the instruction before starting this part)

- i) (I) Using the thermometer, measure and record the temperature of the room, $\boldsymbol{\theta}$.
 - *θ*.....°C.
 - (II) Using the 250 ml beaker, collect 200 ml of hot water from the boiling source. Place the thermometer into the hot water and wait until it cools to **80** °C the start the stopwatch and record time t_1 it takes to cool to **75** °C.

k) State with reason how the rate of change of temperature between **50** °C and **45** °C compares with ρ (2mks)