NAME	CLS
233/1	
CHEMISTRY	
PAPER 1 (THEORY)	
TERM TWO, AUGUST 2022	
TIME: 2 Hours	

MURANG'A EXTRA COUNTY SCHOOLS EXAMINATION (MECS)

Instructions to Candidates

- Write your name, admission number in the spaces provided above
- Answer all the questions in the spaces provided
- KNEC Mathematical tables and silent electronic calculator may be used.
- All the working must be shown clearly where necessary
- Candidates should answer questions in English.
- this exam consists of 11 printed pages

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
Q.T		
1-29	80	
more		

1.a) Define the term fuels	(1mk)
b) State two reasons why hydrazine is used as rocket propell	ant (2mks)
2. Hydrogen can be placed in group VII and group I of the p	eriodic table respectively. Use
equations to explain	(3mks)
	-1200°
	285
, ties	
3. Study the set-up below and answer the questions that follows	ow:-
Iron nails Test tube	Water
a) Name the process being investigated	(1mk)
b) State two observations that would be made after one week	x. Explain (2mks)

4.1) Apart from water softening list two other uses of sodium carbonate	(2mks)
ii) Using an ionic equation show how sodium carbonate is used to soften hard water	(1mks)
5. A form four student from Orawa secondary school found a white solid in a beaker to the last of the sulphate and aluminium sulphate associately. Briefly suplain how	that had
two labels of zinc sulphate and aluminium sulphate respectively. Briefly explain how would test whether it was a compound of zinc or aluminium	(3mks)
6. The set-up below was used to prepare a carbon (II) oxide gas.	
Methanoid acid	$(1/2^{mk})$
(b) Complete the diagram to show how the gas can be collected (1 ¹	-/ ₂ mks)
(c)Write the equation for the reaction	(1mk)
7. A certain gas A was passed over a hot black metal oxide B, a brown solid was form colorless liquid C that boiled at 105 °C, the liquid also changed a blue anhydrous coba	ned and a

chloride paper to pink.

Factors		Effect on rate		Explanation	
explanation				(2 mks	5)
Complete th	ne table to show how t	he factors given affe	ct the rate of	reaction above and given	ve
Zn(s) + 2H	$Cl(aq) \rightarrow ZnCl_2(aq) +$	- H ₂ (g)			
9. Zinc reac	ts with HCl according	g to the equation belo	w.		
	ole				
	- King				
(11)					, ,
	Which of the element	·U.			(1mk)
		1/2			
(i) A	Are the elements meta	ls or non-metals? Ex	xplain		(2mks)
С	0.174	0.099	590		
В	0.089	0.031	900		
A	0.136	0.065	736		
Element	Atomic radius (nm)	Ionic radius (nm)	First ionizat	ion Energy (KJ mol ⁻¹))
	e actual symbols)	to the same group of	tute periodic	S.	
8 The follo	wing elements belong	to the same group of	f the periodic	table (Letters do not	+
					•••••
ii. State and	explain a reason why	the colourless liquid	l C boiled at 1	105°C	(1mk)
c)Colourles	s liquid C				$(\frac{1}{2^{mk}})$
b)Metal oxi	de B		• • • • • • • • • • • • • • • • • • • •	(÷	$l/_{2^{mk}}$
a) Gas A	•••••		• • • • • • • • • • • • • • • • • • • •	(-	$^{1}/_{2^{mk}}$
i. Name					

Using Zinc powder instead	
of granules	
Heat the reactants	
10. Which allotrope of sulphur:	com
a. Is stable at room temperature	(1mk)
	e,
10. Which allotrope of sulphur:a. Is stable at room temperature	(1mk)
c. Has higher density	(1mk)
11. A certain flower was suspected to contain red and yello	
pigments could be separated	(3mks)
12. A certain element has two isotopes with atomic mass 6	and 7 respectively. Given that the
relative atomic mass is 6.94. Calculate the relative abundance	dance of each isotope (2mks)
13. The set up below was used to collect gas K , produced by	
	by the reaction between water and
calcium metal.	

Gas K	
Water	
Calcium metal	
	(2mlra)
	(2mks)
	• • • • • • • • • • • • • • • • • • • •
	•••••
	<u>C</u>
ii. Write an equation for the reaction taking place.	(1mk)
14. State the properties of concentrated sulphuric (vi) acid demonstrated in the	ne following
reactions	
i. Reacts with sodium chloride to form hydrogen chloride gas	(1mk)
ii. Reacts with copper metal to form sulphur (iv) oxide	(1mk)
15. 1.0g sample of limestone was allowed to react with 100cm ³ of 0.2M hydr	
excess acid required 24.8cm of 0.1M sodium hydroxide solution for complet	te neutralisation.
Calculate the percentage of calcium carbonate in the limestone	(3mks)
······································	
	•••••

16. In an experiment, dry chlorine gas was reacted with aluminium as shown in the diagram below

I	Iron Dry Chlorine gas	W.	Calcium Chl	oride		
	(i) State two proper	ties of substar	nce A		A	(2mk)
••					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
••	(ii) Write an equation	on for the reac	ction that took		mbustion tube	(1mk)
17. S	tate one use each of th		pparatus in the	laboratory		(3mks)
	Desiccator			CSOR		
i.	Crucible		i www.ice			
ii.	Deflagrating spoon	e exams				
 18. U	sing dots and crosses H ₃ O ⁺ (H=1,O=8)	to represent e		diagrams to rep		n (2mks)

19. Carbon powder and copper (ii) oxide are both black in colour. Suggest two	reactions that can
be used to differentiate them and state the observation in each case.	(3mks)
20. Starting with sodium metal explain how sodium hydrogen carbonate crys	stals can be
prepared	(3mks)
esto	
, co	
21. i) Define the term simple acid base-indicator	(1mk)
, S	
tali	
ii. State two disadvantages of using simple acid-base indicators	(2mks)
	•••••
22. i State two applications of complex ions in industries	(2mks)

23. What do the following abbreviations stand for?	(2mks)
IUPAC	
DDT	
24.i. Differentiate between nuclear fission from nuclear fusion	(2mks)
ii. A radioactive cobalt ($^{61}_{28}Co$) undergoes decay by emitting a beta particle and for	rming
Nickel atom. Write a balanced decay equation for the above change 25. The following are heats of combustion of carbon, hydrogen and ethanol the follow	(1mk)
at Que	
ucsex	
25. The following are heats of combustion of carbon, hydrogen and ethanol the follow	
substances calculate the heat of formation of ethanol	8
$C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}; \Delta H = 393 \text{KJmol}^{-1}$	
$H_{2(g)} + \frac{1}{2}O_{2(g)} \longrightarrow H_{2}O_{(l)}; \Delta H = -286 \text{KJ} \text{mol}^{-1}$	
$CH_3CH_2OH_{(1)} + O_{2 (g)}$ $2CO_{2 (g)} + 3H_2O_{(1)}; \Delta H = 1386KJmol^{-1}$	
a) Draw an energy cycle diagram to represent the heat of formation of ethanol	(1mk)
a) Braw an energy cycle diagram to represent the neat of formation of emanor	(TIIIK)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
b) Calculate the heat of formation of ethanol	(2mks)
o) calculate the near of formation of estation	(211113)
	• • • • • • • • • • • • • • • • • • • •

26. The diagram below shows an electrochemical cell:

a)	Give the formulae of the possible salt L	(1mk)
••••		Car
(b)	On the diagram show the direction of movement of	*0
(c)	Write the cell representation	(1mk)
	wh.	
27. a	a) State the Graham's law	(1mk)
• • • • •		
••••	moreti	
b). 1	00cm ³ of Carbon (IV) oxide gas diffused through a porou	s partition in 30seconds. How long
woul	ld it take 150cm ³ of Nitrogen (IV) oxide to diffuse throug	h the same partition under the same
cond	ditions? (C = 12.0, N = 14.0, O = 16.0)	(2mks)

www.freekcsepastpapers.com

28.	A compound Q was oxidised by acidified potassium dichromate (vi) to form s	ubstance Z.
Sub	stance Z reacts with Q to form a pleasantly smelling compound ethylethanoate	e.
i. N	ame substance Q and Z	(1mk)
11. V	Vrite an equation for the reaction between	
a.	Substance Q and potassium metal	(1mk)
••••		
 b.	Substance Z and sodium carbonate	(1mk)
	Substance 2 and soutum carbonate	(TIIK)
	zet(^o)	••••••
	i. State two distinctive features of a dynamic equilibrium.	(2mks)
		, ,
	No.	
	······································	
ii. E	explain the effect of increase in pressure on the following equilibrium	(1mk)
N ₂ (§	$O_2(g) = 2NO(g)$	
	, (O)	

THIS IS THE LAST PRINTED PAGE

www.freekcsepastpapers.com