	www.freekcsepastpapers.comDATE	
admoindex r	no CANDIDATE'S SIGNAT	URE
233/2		
CHEMISTRY		

TIME: 2 Hours

MURANG'A EXTRA COUNTY SCHOOLS EXAMINATION

TERM 2 – AUGUST 2022

FORM 4

Instructions to Candidates

PAPER 2

(THEORY)

- (a) Write your name and index number in the spaces provided above
- (b) Sign and write the date of examination in the spaces provided.
- (c) Answer all the questions in the spaces provided
- (d) KNEC Mathematical tables and silent electronic calculator may be used.
- (e) All the working must be shown clearly where necessary
- (f) Candidates should answer questions in English.

For Examiner's Use Only

Questions	Maximum Score	Candidate's Score
1 (1)	12	
2	12	
3	8	
4	10	
5	14	
6	14	
7	10	
TOTAL SCORE	80	

1. The grid below represents part of the periodic table. Study it and use it to answer the questions that follow. The letters do not represent actual symbols of the elements.

M								
							В	
G	T		Н			J	L	R
							V	
S								

a.	An element X forms a divalent cation with the electron configuration	2.8.8.	Place ele	ement X in its
	position on the grid	2		(1 mark)

		,
b.	Element G was put in a trough with cold water containing phenolphthalein indicator	
	i. State two observations made during the reaction	(2 marks)
	C.S.	
	-M. KO	
		•••••
	ii. Write a chemical equation for the reaction	(1 mark)
	, all s	
	ØF	
	iii. Compare the reactivity of G and S with cold water. Explain	(2 marks)
	more	,
		•••••
		•••••
		•••••
		••••
c.	Draw dot(o) and cross (x) diagram showing bonding when element T and element L	combine to
	form a compound.	(1 mark)

a. Name the process in (1 mark)

- i.
- ii.

b.	State	the condition in			(2 marks)
	i.	Step 1			
	ii.	Step 5			
c.	Draw	the structure of substance			(2 marks)
	i.	X	ii.	Z	
d.	Name	the reagent used in			(2 marks)
	i.	Step 7			
	ii.	Step 3			
				oeks	
e.	Identi	fy substance	c.X	60x	(1 mark)
	i.	M			
	ii.	Step 7 Step 3 fy substance M Q			
		,,e [©] /C			
f.	Descr	ibe an experiment used to distinguish between the	product i	in step 1 and step 7	(2 marks)
		the an experiment used to distinguish between the			
	•••••	⊗. ⊗.			
g.		an equation for the reaction of			
	i)	Propanol with potassium			(1 mark)
	ii)	Propene with oxygen			(1 mark)
	•••••			•••••	••••••

3. A student reacted 6g of magnesium ribbon with 50 cm³ of 0.1M Hydrochloric acid and measured volume of hydrogen gas given off every 10 seconds for 60 seconds. The table below gives the results obtained.

Volume of	0	9	15	19	20	20	20
hydrogen gas (cm ³)							
Time taken	0	10	20	30	40	50	60
(seconds)							

a. On the grid below, plot a graph of Volume of hydrogen gas (y - axis) against time (x - axis) (3 marks)

b. From the graph determine:

	www.freekcsepastpapers.com ii) Time taken for 12 cm ³ of hyd	www.freekcsepa drogen gas pro		www.free	ekcsepastpaper	r <mark>s.com</mark> mark)
c.	Explain the shape of the curve between	een 40 – 60 se	econds		(1	mark)
d.	The experiment was repeated using	IM Hydrochl	oric acid.	•••••	•••••	••••••
	i) On the same axes sketch the	curve that wo	ould be obtained		(1	mark)
	ii) Explain your answer in d(i) a	lbove			(1	mark)
4.	Study the flow diagram below and u	se it to answe	r the questions that	follow		
			sip			
	Gas A		EER			
	Catalyst M A	mmonia	Excess oxygen	Brown	Water	Nitric (V)
	Step 1	gas	Step 2	gas T	Step 3	acid
	Hydrogen	is st way	Catalyst B			
a.	Name;	S			(2	marks)
	iii. Gas A	•••••				
	iv. Catalyst M					
	v. Catalyst B					
	vi. Gas T					
b.	Write an equation for:				(2	marks)
	i) Step 1					
				•••••		
	ii) Step 3					

(1 mark)

c. Name the main source of gas A

.....

d. Ammonia gas was passed through a combustion tube containing heated copper (II) oxide as shown in the diagram below.

i) State and explain one observation made in the combustion tube (2 marks)

Identify gas Z (1 mark)

- ii) What property of ammonia is being investigated? (1 mark)
- iii) Name a suitable drying agent for ammonia gas (1 mark)
- 5. The diagram below shows the set up used to investigate enthalpy of combustion of ethanol when 450cm³ of water was heated

The data below was obtained during the experiment

 $= 450 \text{ cm}^3$ Volume of water

Initial temperature of water

Final temperature of water

Mass of the lamp + ethanol before heating

Mass of the lamp + ethanol after heating

Density of water

Specific heat capacity

- a. Calculate;
- g
 = 1g/cm³
 = 4.2 Kj Kg⁻¹ KJ Cse Pastpapers.com
 ment with the Heat evolved during the experiment. i)

Ethanol

ii) Moles of ethanol that reacted (C=12.0, H= 1.0, O=16.0) (1 mark)

Molar heat of combustion of ethanol (2 marks) iii)

b. Write a thermochemical equation for the reaction (1 mark)

(2 marks)

c.	The theoretical molar enthalpy of combu		Give two reasons why the
	experimental value is less		(2 marks)
			•••••
d.	Name two factors to consider before choose	osing a fuel	(2 marks)
			~
e.	Study the information below and use it to	answer the questions that follows	2/,
	ΔH^{θ} lattice = MgCl ₂ - 2477kjmc	ol-1	
	ΔH^{θ} hydration Cl ⁻¹ (aq) -363kjmol	-1 ASIDAY	
	ΔH^{θ} hydration Mg^{+2} (aq) -1891jmol	o answer the questions that follow of a substance?	
i)	Define the molar enthalpy of solution	a combustion of a substance?	(1 mark)
	?		
	ams	······	
ii)	Using the above information Draw ar	n energy level diagram to represent	the heat of solution of
	Magnesium Chloride		(1 mark)
iii)	Calculate the heat of solution of Magnesi	ium Chloride (2 marks)	
• • • •			

6. Use the reduction potentials below for P, Q, R, S and T to answer the questions that follow.

Reaction	E ° value (V)
$P^{2+}(aq) + 2e^{-} \rightarrow P(s)$	- 0.79
$2Q^{+}(aq) + 2e^{-} \rightarrow Q_{2}(s)$	0.00
$R^{2+}(aq) + 2e^{-} \rightarrow R(s)$	+ 0.45
$S^{2+}(aq) + 2e^{-} \rightarrow S(s)$	- 0.21
$\frac{1}{2} T_2(g) + 2e^- \rightarrow T^-(aq)$	+ 2.91

Identify;

ii)

... cells of P and R were combined

Draw the electrochemical cell formed restrictions and the second restrictions are second restricted by the second restriction of the secon The strongest reducing agent (1 mark)

b. The half cells of P and R were combined

i) (3 marks)

Calculate the e.m.f. of the cell formed ii) (1 mark)

c. During the extraction of sodium using the Down's cell, molten sodium chloride is electrolyzed.

State the role of the following in the cell i) (2 marks) Calcium chloride

Steel diaphragm

ii)	State the observation made at the anode	(1 mark)
iii)	Write an equation for the reaction at the cathode	(1 mark)
iv)	2A was passed through molten sodium chloride for 2 hours and 35 minutes.	utes. Calculate the mass
,	of sodium metal formed (1F= 96,500C, Na=23, Cl=35.5)	(2 marks)
		(2 marks)
	ako.	
d.	State two applications of electrolysis	(2 marks)
	* 1/2	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	<i>.</i> ,000	

7. The set up below was used to prepare hydrogen chloride gas and salt T.

f.	In the space provided below, draw a well labelled diagram showing how you would dissolve hydrogen				
	chloride gas in water.	(1 mark)			
		•••••			
g.	. Explain why hydrogen chloride gas dissolved in methylbenzene does not react with calciu				
		(1 mark)			
		• • • • • • • • • • • • • • • • • • • •			
	com				
	als.				
	Dasily Dasily				
	* 40 OL				
	inn!				
	AL WALLEY TO THE REAL PROPERTY OF THE PROPERTY				
	ams o				
	eto				
	more hee exams at www. Heekesepastpapers.com				
	noise the second of the second				

Page **13** of **13**