MURANG'A EXTRA COUNTY SCHOOLS
 CHEMISTRY FORM 4 END OF TERM 2 - 2022 EXAMINATION

NAME: \qquad CLASS. \qquad ADMNO 233/3
CHEMISTRY
PAPER 3
TIME: 2¼ HOURS

Kenya Certificate of Secondary Education

INSTRUCTIONS TO CANDIDATES

(a) Write your name and admission number in the spaces provided above.
(b) Answer all the questions in the spaces provided.
(c) Mathematical tables and silent non-programmable electronic calculator many be used.
(d) All working must be clearly shown where necessary.

FOR EXAMINER'SUSE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1	11	
2	8	
3	40	
TOTAL SCORE	21	

This paper consists of 6 printed page Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing.

You are provided with:

- Solid F
- 2.0 M hydrochloric acid solution G
- 0.1 M sodium hydroxide

You are required to determine the;
i) Enthalpy change $\Delta \mathrm{H}$, for the reaction between solid F and one mole of hydrochloric acid

Procedure:

I. Using a burette place $20.0 \mathrm{~cm}^{3}$ of 2.0 M hydrochloric acid, solution G in a 100 ml beaker. Measure the initial temperature of the solution after every $1 / 2$ minute and record the values in table 1 below. At exactly 2 minutes, add all of solid F to the acid. Stir the mixture gently with the thermometer. Measure the temperature of the mixture after every half-minute and complete the table. (Retain the mixture for use in procedure II)
Table 1

Time (min)	0	$1 / 2$	1	$1 \frac{1}{2}$	2	$2^{1 / 2}$	3	$31 / 20^{\circ}$	4	$41 / 2$	5
Temperature $\left({ }^{\circ} \mathrm{C}\right)$								${ }^{2}$			

a) Plot a graph of temperature (y-axis) against time.
(3 marks)

Page $\mathbf{2}$ of $\mathbf{7}$
b) From the graph determine the change in temperature ΔT
c) Calculate the heat change for the reaction (Assume the specific heat capacity of the mixture is 4.2 J $\mathrm{g}^{-1} \mathrm{~K}^{-1}$ and the density of the mixture is $1 \mathrm{~g} / \mathrm{cm}^{3}$)
(1mark)

Procedure II

Rinse the burette thoroughly and fill it with sodium hydroxide. Transfer all the contents of the 100 ml beaker from procedure I above into a 250 ml volumetric flask, add distilled water to make up to the mark. Label this solution H . using a pipette and a pipette filler, place 25 cm 3 of solution H into a 250 ml conical flask. Add two to three drops of phenolphthalein indicator and titrate against sodium hydroxide. Record your results in table 2. Repeat the titration two more times and complete the table.

Table 2

Final burette reading $\left(\mathrm{cm}^{3}\right)$	II	III	
Initial burette reading $\left(\mathrm{cm}^{3}\right) e^{+8}$			
Volume of solution solutión D used $\left(\mathrm{cm}^{3}\right)$			

Calculate the;
I. Average volume of sodium hydroxide used

II. Number of moles of:

i) Sodium hydroxide used
ii) Hydrochloric acid in $25 \mathrm{~cm}^{3}$ of solution H
iii) Hydrochloric acid in $250 \mathrm{~cm}^{3}$ of solution H
iv) Hydrochloric acid in $20 \mathrm{~cm}^{3}$ of solution G
v) Hydrochloric acid reacted with solid F
c. Calculate the enthalpy of reaction between solid F and one mole of hydrochloric acid. (Show the sign of $\Delta \mathrm{H}$)
2. You are provided with solid A. Carry out the tests described below and write your observations and inferences accordingly.
i. Dissolve solid A in about $10 \mathrm{~cm}^{3}$ of distilled water in a boiling tube divide the resulting solution into five portions.

Observations	Inferences	
	$(1 \mathrm{mark})$	

ii. To the first portion and 5 drops of 2 M sodium hydroxide solution

Observations			Inferences
	(1 mark)		(1 mark)

iii. To the second portion dip a glass rod to one of the remaining portions and heat it in a non-luminous flame.

Observations	Snferences	
	$e^{(1 / 2 \mathrm{mark})}$	$(1 / 2 \mathrm{mark})$

iv. To the third portion ad@2 or 3 drops of lead (II) nitrate solution

Observations	Inferences		
	$(1 \mathrm{mark})$		$(1 \mathrm{mark})$

v. To the forth portion add 2 or 3 drops of barium (II) chloride followed by $2 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid. Shake the mixture well.

| Observations | Inferences | |
| ---: | ---: | ---: | ---: |
| | | |
| | | |
| | $(1 \mathrm{mark})$ | $(1 \mathrm{mark})$ |

vi. To the fifth portion add 3 drops of acidified potassium manganate (VII) solution

Observations	Inferences	
	$(1 \mathrm{mark})$	

3. You are provided with substance B.

Carry out the tests described below and record your observations and inferences accordingly.
Procedure
(i) Place a little amount of substance B in a gretallic spatula and ignite it in a blue bunsen burner flame.

(ii) Place a spatulaful of substance B in a boiling tube. Add about $20 \mathrm{~cm}^{3}$ of distilled water and shake well. Divide the solution into three portions. Test the pH of one portion of the solution above using a full range pH chart.

Observations	Inferences	
	$(1$ mark $)$	

(iii) Add the sodium carbonate provided to the second portion.

Observations	Inferences		
	$(1 \mathrm{mark})$		

(iv) Add a few drops of potassium manganate (VII) solution to the third portion and warm mixture.

Observations	Inferences
(1 mark)	

THIS IS THE LAST PRINTED PAGE

