NAME:	INDEX NO:	
	CANDIDATE'S SIGN:	
232/1		
PHYSICS		
PAPER 1	DATE:	
(THEORY)		
AUGUST, 2022		
TIME: 2 HOURS		

www.freekcsepastpapers.com

SUKELLEMO JOINT EXAMINATIONS – 2022

INSTRUCTIONS TO THE CANDIDATE:

www.freekcsepastpapers.com

- (a) Write your name and index number in the spaces provided above.
- (b) **Sign** and write the **date** of examination in the spaces provided above.
- (c) This paper consists of **two** Sections A and B.
- (d) There are 14 printed pages, with 18 questions check to confirm that your paper is complete.
- (e) Answer **all** the questions in sections **A** and **B** in the spaces provided.
- (f) All working **must** be clearly shown in the spaces provided.
- (g) Mathematical tables and electronic calculators may be used.

FOR EXAMINER'S USE ONLY:

		TOR EXHIBITER S CSE OFFET.				
Section	Question	Maximum	Candidate's			
		Score	Score			
		SON				
A	1 – 13	25,5				
	14	75 ¹ (2)				
В	15	12				
	16,00	12				
	cit will 7	09				
	18	10				
Tota	l Score	80				

This paper consists of 13 printed pages. Students should check the question paper to ensure that all the pages are printed as indicated and no questions are missing.

www.freekcsepastpapers.com

www.freekcsepastpapers.com

SECTION A (25 MARKS)

1. A Vernier calliper was used to measure the diameter of a ball bearing. Given that its diameter is 2.3		
	draw a Vernier calliper scale showing this reading.	(2 marks)
2.	χm³ of a substance which has a density of 0.8/gcm³ is mixed with 1000cm³ of sea water	of density
	1020kg/m³. The density of the mixture is 960kg/m³. Determine the value of χ .	(3 marks)
	islon	
	(§)	
	· / / / / / / / / / / / / / / / / / / /	
	When building a house using bricks a damp course is laid just above the brick foundation	
3.	When building a house using bricks a damp course is laid just above the brick foundation	on. Explain why
	the damp course is necessary.	(1 mark)
	the damp course is necessary.	
	- it want to	••••••
4.	A sprig whose spring constant is 25N/m extends when supporting a certain load. It's lea	ngth increases
	from 0.1m to 0.2m. Determine the work done in stretching the spring.	(2 marks)

5. Figure 1 below shows a trolley moving on a circular rail with a vertical plane, given that the mass of the trolley is 250g and the radius of the rail is 1.6m.

Determine the force exerted on the rail at point Z if the velocity of the trollex at this point is 4m/s.

	evision	(3 marks)
	, ore	
	KOL IN	
6.	Explain why gases are compressible.	(1 mark)
	A STATE OF THE STA	

7. A 100cm uniform wooden plank BC of mass 600g is balanced horizontally by a mass M placed at 90cm mark when an inextensible string is tied at 60cm mark as shown in the figure 2 below.

	www.freekcsepastpapers.com Calculate the tension T in the string.	www.freekcsepastpapers.com (3 marks)
8.	I) Figure 3 below shows a thermometer used by a doctor to determine the	temperature of a patient. Why
	is it difficult to work with this thermometer?	(1 mark)
	35 43 Fig 3	ontent
	vision	
	II) Give a reason why the thermometer above cannot be sterilized by usin	g boiling water.
	s.com to	(1 mark)
	-085W	
	NC3	
9.	Figure 4 below shows samples of the same liquid B and C being heated the	nrough a well-lagged copper
	rod of non-uniform cross-sectional area. A thermometer is placed in each	n sample for sometime.
	Lagged Copper rod Heat C Thermometer Lagged Copper rod Heat B	ermometer Lignid.

Figure 4

If the rod is being heated at the middle, state and explain which of the thermometers records a higher (2 marks) temperature. 10. Water flows through a narrow pipe of radius 6cm connected to another pipe of radius 9cm. If the speed of water in the narrow pipe is 3m/s, determine the speed of water in the wider section. (3 marks) 11. Give the transducer used to convert mechanical energy to electrical energy. 12. A stone is thrown vertically upwards from an edge of a platform. Eventually the stone lands without bouncing, on the ground below the platform. Taking the upward velocity to be positive, sketch, on the axes provided the velocity-time graph of the motion of the stone. (1 mark)

13. Figure 5 below shows a marble placed on an inverted bowl.

State the type of equilibrium the marble is in.	(1 mark)
*orit	
CECTION D (55 MADICS)	
SECTION B (55 MARKS)	

14. a) Define specific latent heat of vaporization of a substance.	(1 mark)	
role,		
got le		
45.COM		
No de la companya de		

b) State two ways by which the rate of evaporation of a liquid may be increased. (2marks)

c) In an experiment to determine the specific latent heat of vaporization of water, steam at 100°C was passed into water contained in a well-lagged copper calorimeter. The following measurements were made:

- Mass of calorimeter = 60g
- mass of water + calorimeter = 145g
- Final mass of calorimeter + water + condensed steam = 156g
- Final temperature of the mixture = 48°C

[Specific heat capacity of water = $4200 \text{Jkg}^{-1} \text{K}^{-1}$ and specific heat capacity of copper = $390 \text{Jkg}^{-1} \text{K}^{-1}$]

(i) mass of condensed steam.		(1 mark)
(ii) The heat gained by the water and calorim	eter if the initial temperatu	re of the calorimeter and water is 20°C.
		(3mks)
		aten't
		a ^{visio}
		rite an expression for the total heat given
out by steam.	of vaporization of steam, wi	(2 marks)
	7020°	
gS	800	
(iv) Determine the value of L _v above		(2 marks)
ješť vyvy		
(v) State the assumption made in the above of	experiment.	(1 mark)

5. (a)	State Boyle's law for an ideal gas.	(1 mark)
•••••		
•••••		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •

(b) The pressure P of a fixed mass of a gas at a constant temperature of T = 200K is varied continuously and values of corresponding volume recorded. A graph P against $\frac{1}{V}$ is shown on grid below.

Use the graph to

determine the volume of the gas when the pressure reads 2.8 x 10⁵pa . (2 marks) (i)

	(ii)	the slope of the graph.		(2 marks)
iii)		Given that $T = \frac{PV}{2R}$, where R is	a constant, use the slope obtain	ed in (ii) above
		to find the value of R.		(3 marks)
			contes	<u> </u>
			ision	
c) A	certain mass of	hydrogen gas occupies a volume o	f 1.6m ³ at a pressure of 1.5x10	⁵ Pa and a temperature of
12°c.	Determine the	volume when the temperature is 0^0	c at a pressure of 1.0x10 ³ Pa.	
		ool	9. CO,	(2 marks)
••••••	•••••	2051000		
••••••	••••••	4CSEV		
d) St	ate any two ass	volume when the temperature is 0°	gases.	
••••••		115		
16.	a) A ball bea	ring x is dropped vertically downw		
		Another ball bearing Y leaves the e	edge of the table horizontally w	with a velocity of 5m/s.
	Find: i) The h	norizontal distance travelled by Y b	efore hitting the floor.	(2 marks)
			-	

www.freekcsepastpapers.com

www.freekcsepastpapers.com

www.freekcsepastpapers.com

fluids A and B

c. Figure below shows the velocity time graph of two identical spheres released from the surfaces of two

- (ii) Mark on the diagram the terminal velocity on the sphere in each fluid. (1 mark)
- 17. a) i) Dams which hold water reservoirs are thick at the base than at the top. Explain. (1 mark)
 - (i) Define the term pressure and state its SI units. (2 marks)
 - ii) The diagram below shows a brick of mass 4kg. The brick measures 30cm x 6cm x 3cm

Page 11 of 13

Fig 5

The brick is laid in a away such that it exerts maximum pressure	. Calculate the maximum pressure the brick
will exert on the surface.	(3 marks)
b) Figure 7 below shows an inclined plane, a trolley of mass 30kg is	pulled up a slope by a force of 100N parallel
to the slope. The trolley moves so that the centre of mass C trav	els from points A to B.
100N C 15°	B 10m content
Determine the efficiency of the system.	(3 marks)
contr.	
EtQ'o'	

18. The figure below shows an iron cylinder of length 10cm and uniform cross-section 2cm² suspended from a spring balance with half of its length immersed in paraffin oil of density 0.8gcm⁻³.

	(i)	Show on the diagram, the forces acting on the iron cylinder.	(3 marks)
	(ii)	If the density of iron is 7.5gm ⁻³ determine.	
		(i) the weight of the iron cylinder.	(3 marks)
		A SOLIT	
		(ii) the reading of the spring balance.	(3 marks)
		ï	
		\sim	
		(A)	
		<u>, </u>	
(d)	Expla	in how a submarine is made to sink to a point below the surface of water	
		Jisit www.freexcs	
		Jish Comment of the C	