121/

MATHEMATICS ALT A ©

Dec. $2022 \quad 1 / 2 h o$

am

Candidate's Signatu

Dat

In tructions to Candidates

(a) Write your name and index number in the spaces provided above.
(b) Sign and write the date of examination in the spaces provided above.
(c) This paper consists of two sections: Section I and Section II.
(d) Answer all the questions in Section I and only five questions from Sectign 11.
(e) Show all the steps in your calculation, giving your answers ateach stage in the spaces provided below each question.
(f) Marks may be given for correct working even if the answer is wrongg
(g) Non-programmable silent electronic calculators and KNE 1 mathemavical tables may be used, except where stated otherwise.
(h) This paper consists of 19 printed pages.
(i) Candidates should check the question paperto ascertain that all the pages are printed as indicated and that no questions are missilgg.
(j) Candidates should answer the question's in English.

For Examiner's Use Only Section I

SECTION I (50 marks)

Answer all the questions in titis section in the spaces provided.

1. Solve for n

$$
\begin{aligned}
& \frac{6 n}{n-1} x_{n}^{25} \\
& n(6 n)=25(n-1) \\
& 6 n^{2}-25 n+25=0 \\
& 6 n^{2}-15 n-10 n+25=0 \\
& (3 n-5)(2 n-5)=0 \\
& \left.3 n-5=0 \Rightarrow n=5 / 3=1 \frac{1}{3} \quad\right\} \quad b \text { oft } \\
& \text { or } 2 n-5=0 \Rightarrow n=5 / 2=2 \frac{1}{2}
\end{aligned}
$$

2. A family used two-finths of its monthly income on school fees. Three-quarters of the remaining amount was used on family upkeep while the rest was invested. The family invested Ksh 13500 monthly.

Calculate the amount of money the family used on school fees every month.

$$
\begin{aligned}
& \text { Fens }=2 / 5 ; 2 e m .=5 / 5-2 / 5=3 / 5 \\
& \text { prep }=3 \times 3 / 5=9 / 100 ; \text { Rem. }=3 / 5-9 / 20=3 / 20 \\
& \text { Invest. }=3 / 20 \\
&=13500 \\
& 2 / 5=2 / 5 \times 13500 \times 20 \\
&=\text { Kish. } 36000
\end{aligned}
$$

3. Solve for x in the equation.
$5^{2 r-1}-25^{x}=500$
$5^{2 x-1}-5^{2 x}=500$
$-4 / 5 k=500$
(3 marks)
$5^{2 x} \cdot 5^{-1}-5^{2 x}=500$
$\Rightarrow 5^{2 x}=-625$
Let $5^{2 x}$ be k
$5^{2 x}=-5^{4} 2$
$\therefore y_{5} k-k=500$
x is indeterminate/complex number
4. Kipkecel and Tannin began a 5000 m race together at the starting line. Kipkoech and Tanui took 72 seconds and 80 seconds respectively to run a 400 m lap. The two athletes were together again at the starting line after some time.

Determine the number of laps that Tanui had to run to complete the race after they were together.
(3 marks)

2	72,80	Time taken to be together again ?
2	36,40	$L C M=2^{4} \times 3^{2} \times 5=720$ sec

| 2 | 36,40 |
| :--- | :--- | :--- |
| 2 | 18,20 |$\quad L C M=2^{4} \times 3^{2} \times 5=720$ sec.

5. Simplify

$$
\begin{aligned}
& \frac{18 a x-(3 a-4 x)(3 a+4 x)}{3 a-8 x} \\
& \begin{aligned}
& \frac{(39-4 x)(3 a+4 x)}{}=\frac{189 x-\left(9 a^{2} 516 x^{2}\right)}{39}-16 x^{2} \\
&=\frac{16 x^{2}+189 x-9 a^{2}}{3 a-8 x} \\
&=\frac{16 x^{2}+24 a x-6 a x-9 a^{2}}{3 a-8 x} \\
&=\frac{(2 x+39)(8 x-39)}{-1(8 x-3 a)} \\
&=-2 x-3 a
\end{aligned}
\end{aligned}
$$

6. In the quadrilateml $\mathrm{ABCD}, \mathrm{AD}=\mathrm{CD}=6 \mathrm{~cm}$ and $\mathrm{BA}=\mathrm{BC}=12 \mathrm{~cm}$. Angle $\mathrm{ADC}=300^{\circ}$.

Calculate, correct to 2 decimal places, the area of the quadrilateral $A B C D$.
A. $9 \triangle A D C=\frac{1}{2} \times 6 \times 6 \sin 60^{2}=9 \sqrt{3} \mathrm{~cm}^{2}$

LSF $=\frac{12}{6}=2 \Rightarrow A S F=2^{2}=4$
Ag $\triangle A B C=4 \times 9 \sqrt{3}^{2}=36 \sqrt{3}$ cir 2
A. $9 \mathrm{ABCD}=36 \sqrt{3}-9 \sqrt{3}=27 \cdot \sqrt{3} \mathrm{~cm}^{2}$

$$
x^{2}=46.77 \mathrm{~cm}^{2}
$$

7. A watch loses 8 seconds every hour. It was set to read the correct time at 1100 h on Sunday.

Determine the time, in a 12 -hour system, the watch will show on the following Thursday when the correct time is 0500 h .
1100 h sun. $\xrightarrow{\text { e }} 1100 \mathrm{~h}$ Wed. $=24 \times 3=72 \mathrm{~h}$.
1100 h effed. $\rightarrow 0500 \mathrm{~h}$ Thar. $=18 \mathrm{~h}$.

$$
\begin{aligned}
\text { Total } & =18+72=90 \mathrm{~h} . \\
\text { Time lost } & =\frac{90 \times 8}{60}=12 \mathrm{miL} .
\end{aligned}
$$

Time on Thur $=5: 00 \mathrm{a} \cdot \mathrm{M}$. -12 min

$$
=4: 48 \mathrm{a} \cdot \mathrm{~m} .2
$$

8. A lory left town A for town B and maintained an average speed of $50 \mathrm{~km} / \mathrm{h}$. A car left town A for town $B 42$ minutes later and maintained an average speed of 80 kmh . At the time the car amid in town B, the lorry had 25 km to cover to town B .
Determine the distance between town A and B.
$A \longmapsto \quad \times \mathrm{kM} \quad B$
Time ivan 4 Car $=\frac{x}{20} h$.
Distance by horny $=50 \times \frac{42}{60}+50 \times\left(\frac{x}{56}\right)=(x-25)$
When ar arrived ats

$$
\begin{aligned}
0.625 x+35 & =x-25 \\
(1-0.625) x & =35+25 \\
x & =160 \mathrm{kM}
\end{aligned}
$$

9. Port L is 120 km on a bearing of $\$ 30^{\circ} \mathrm{W}$ from port K . A ship left port K 9 t 1000 h and sailed at a speed of $40 \mathrm{~km} / \mathrm{h}$ along the bearing of $\mathrm{S} 60^{\circ} \mathrm{E}$.

Using sale drawing, determine the bearing of the ship from pogo at 1400 h .
Sketch

SCale: 10 cm moments 20 km .

$$
\begin{gathered}
\text { Bearing is } N 83^{\circ} E \\
\text { of } 083^{\circ}
\end{gathered}
$$

10. The image of $P(-2,5)$ under a translation T is $P^{\prime}(2,2) . Q^{\prime}(9,-5)$ is the image of Q under the same imnslation T.

Determine the coordinates of Q.

$$
\begin{array}{ll}
\text { Let } T=\binom{x}{y} & I=\binom{4}{-3} ; \text { Let } X(a, b) \\
\therefore\binom{x}{y}+\binom{-2}{5}=\binom{2}{2} & \Rightarrow\binom{4}{-3}+\binom{a}{b}=\binom{9}{-5} \\
\begin{array}{ll}
x-2=2 \Rightarrow x=4 & 4+a=9 \Rightarrow a=5 \\
y+5=2 \Rightarrow y=-3 & \\
& -3+b=-5 \Rightarrow b=-2 \\
& \therefore Q(5,-2)
\end{array}
\end{array}
$$

11. A Kenyan bank bought and sold United Arab Emirates (UAE) dirhams on two different dates as shown below.

		Buying (Kish)	OR Selling (Ssh)
Sst August 2021	1 UAE dirham	28.40	S
16th August 2021	I UAE dirham	28.00	28.90

A Kenyan tourist who travelled to UAE on Iss August 2021 converted Kish 130050 to UAE dirhams.

During her stay in UAE, she spent $3 \leqslant 20$ UAE dirhams. She arrived back to Kenya on 16th August 2021. On the same day she converted the remaining amount of money to Kenya shillings at the same bank.

Calculate the amount ofanoney in Kenya shillings that she received from the bank. (3 marks) Dirhams sicesived $=\frac{130050}{28.90}$ or 4500 Dirhams $\begin{aligned} & \text { Remainder after expenses: } \\ &=4500-3520 \text { or } 980 \text { Dirhams }\end{aligned}$
Kush received $=980 \times 28.00$
$=$ kush. 27440
12. An electric post erected vertically is 20 m from point P on the same level ground. The angle of elevation of the top. T, of the post from P is 30°. Given that S is the mid point of the post, calculate, correct io I decimal place, the angle of elevation of S from P.
(3 marks)

$$
\begin{aligned}
R T & =20 \tan 30^{\circ} \text { or } 11.55 \mathrm{M} \\
R S & =1 / 2 \times 20 \tan 30^{\circ} \\
& =10 \tan 30^{\circ} \text { or } 5.7 \pi 4 \mathrm{~m} \\
\theta & =\tan ^{-1}\left(\frac{10 \tan 30^{\circ}}{20}\right) \checkmark{\operatorname{or~} \tan ^{-1}\left(\frac{5.774}{20}\right)}=16.1^{\circ}
\end{aligned}
$$

13. $\begin{aligned} & \text { Given that } A=\left(\begin{array}{cc}2 & 6 \\ 2 u & 5\end{array}\right), B=\left(\begin{array}{cc}7 & -3 \\ -u & 5\end{array}\right) \text { and } \mathrm{BA}=\left(\begin{array}{cc}2 & v \\ 16 & w\end{array}\right) \text {, determine the values of } \text { (3 mark) }\end{aligned}$

$$
\left.\begin{array}{l}
\underset{\sim}{B A}=\left(\begin{array}{cc}
7 & -3 \\
-4 & 5
\end{array}\right)\left(\begin{array}{cc}
2 & 6 \\
2 u & 5
\end{array}\right)=\left(\begin{array}{cc}
7 \times 2+-3 \times 24 & 7 \times 6+-3 \times 5 \\
-4 \times 2+5 \times 24 & -4 \times 6+5 \times 5
\end{array}\right)^{5}=\left(\begin{array}{cc}
14-6 u & 27 \\
84 & 25-64
\end{array}\right) \\
\therefore\left(\begin{array}{cc}
14-6 u & 27 \\
8 u & 25-64
\end{array}\right)=\left(\begin{array}{cc}
2 & v \\
16 & w
\end{array}\right) \\
\Rightarrow 8 u=16
\end{array}\right\}
$$

14. The capacities of two similar containers are 54 ml and 250 ml respectively. The difference in the heights of the two containers is 4 cm .

Calculate the height of the larger container.

$$
\begin{aligned}
& V S F=\frac{250}{524}=\frac{125}{27} \\
& L S F=\left(\frac{125}{27}\right)^{1 / 3}=\left(\frac{5}{3}\right)^{3 x / 3 /}=5 / 3 \\
& \therefore \frac{5}{3}=\frac{x+4}{x} \\
& 5 x=3 x+12 \Rightarrow x=6 \\
& \text { H. } q \text { larger container }=6+4=10 \mathrm{CM}
\end{aligned}
$$

15. The table below shows the mean marks in a mathematics test of two classes.

Class	Number of students	e' Mean mark
X	43	65
Y	45	62

Calculate, correct to 2 decimal places, the mean mark of the classes.
Mean $=\frac{(443 \times 65)+(45 \times 62)}{(43+45)}$

$$
=63.47
$$

16. The base, ABCDEF, of a right pyramid is a regular hexagon of side 2.5 cm . Point V is the vertex of the pyramid and the length of the slanting edges is 4 cm .

Draw a labelled net of the pyramid.
(3 marks)

SECTION II (50 marks)

Answer only five questions in this section in the spaces provided.
17. A contractor hired Weman and Tatu to transport 144 tonnes of stones to building sites A and B

To transport 48 tonnes of stones for a distance of 28 km , the contractor paid Kish 24000 .
(a) Wema transported 96 tomes of stones to site A, a distance of 49 km .
(i) Calculate the amount of money that was paid to Wema.

(ii) For every 8 tonnes of stones Wema transported to sited, he spent Kish 3000.

Calculate the profit Wema made.

$$
\begin{aligned}
\text { Expenses } & =\frac{96}{8} \times 3000=36000 \\
\text { Profit } & =84000-36000 \\
& =\text { Kph. } 450000
\end{aligned}
$$

(b) Tatu transported the remaining 48 tonnes of stones to site B , a distance of 84 km . If Tate made 44% profit, calculate the amount of money Tatu spent to transport the stones.

$$
\begin{aligned}
& \text { Paid: } \frac{84}{28} \times \frac{48}{48} \times 24000^{\Omega}=K \text { ch. } 72000 \\
& \text { Expenses }=\frac{100-44}{100} \times 72000^{5} \\
& =K 4 L .40320 \sqrt{e^{5}}=
\end{aligned}
$$

(c) Determine the ratio of the profit made by Wema to that made by Tatu.

$$
\begin{aligned}
44 / 100 \times 72000 & =\text { Kish. } 31680 \\
W: T & =48000: 31680 \\
& =50: 33
\end{aligned}
$$

18. A shot put is spherical and has mass of 7.26 kg . It is made of a metal with a density of
(Take $\pi=\frac{22}{7}$).
(a) Determining the radius of the shot put, correct to 1 decimal place.

$$
\begin{aligned}
\text { Vol. }=40 \times \frac{22}{7} \times r^{3} & =\frac{7.26 \times 1000}{6.93} \\
r^{3} & =\frac{7.26 \times 1000 \times 21}{6.93 \times 4 \times 22}=250
\end{aligned}
$$

(b) A bucket is in the shape $\quad=\sqrt[3]{250} \quad=6.3 \mathrm{~cm}$

The base radius of the bucket is 7 cm .
The bucket contains water to a height of 15 cm . The radius of the surface of the water is 10.5 cm .
(i) Find the volume of the water in the bucket.

$$
\begin{aligned}
& \begin{aligned}
\frac{10.5}{7}=\frac{h+15}{h} \Rightarrow h & =30 \mathrm{~cm} \\
H & =45 \mathrm{~cm}
\end{aligned} \\
& v=1 / 3 \times 22 / 7\left(10.5^{2} \times 45-2^{2} \times 30\right) \checkmark \checkmark \\
& =3657.5 \mathrm{~cm}^{3} \\
& \text { *(ii) The shot put ball incompletely submerged in the water in the bucket. } \\
& \text { Calculate thealew height of the water in the bucket. } \\
& \text { (3 marks) } \\
& \begin{array}{l}
\text { end }{ }^{\text {visit. }}=3657.5+\frac{7.26 \times 1000}{6.93} \\
\mathrm{C}^{\mathrm{C}} \mathrm{C}
\end{array} \\
& =\frac{197615}{42} \mathrm{~cm}^{3} \text { or } 4705.1190476 \mathrm{~cm}^{3} \\
& V S F=\left(\frac{45+x}{45}\right)^{3}=\frac{4705.1190476}{3657.5} \\
& x=103.941 \\
& \text { New eight }=15+3.941 \\
& =\mathrm{cm} \text {. } \\
& 18.941 \\
& \text { Kenya Certificate of Secondary Education, 202? }
\end{aligned}
$$

19. A triangle $A B C$ is right angled at point A. The vertices of the triangle are $A(1,-2), B(5,4)$ and $\mathrm{C}(m, n)$.

The equation of line BC is $5 y-x=15$.
(a) Determine:

(i) the equation of line $A C$ in the form $a r+b y+c=0$, where a, b and c are integers.
(4 marks)
$5 y=x+15 \Rightarrow y=1 / 5 x+3$
Gid. of $\overrightarrow{A B}=\frac{4-(-2)^{2}}{5-1}=6 / 4=3 / 2$
Glad. g $\overrightarrow{A C}=\frac{-1}{3 / 2}=-2 / 3$
$\frac{y-(-2)}{x-1}=-2 / 3$
$\Rightarrow-2 x-3 y-4=0$ or $e^{2 x}+3 y+4=0$
(ii) the coordinates of point C .

BC: $\quad(5 y-x=15) \times 2$
(3 marks)

$$
10 y-2 x=30
$$

$$
\begin{aligned}
& 3 y+2 x=-5 \\
& 13 y+0=26
\end{aligned}
$$

$$
\begin{aligned}
& \text { P3y }=26 \Rightarrow y=2 \\
& 5(2)-x=15 \Rightarrow x=-5 \\
& \Rightarrow m=x=-5 \\
& n=y=2 \\
& \therefore C(-5,2)
\end{aligned}
$$

(b) A line passes through point A and is parallel to line BC.

Determine the f-intercept of the line.

$$
B C:{ }^{x}=1 / 5 x+3 \Rightarrow m_{1}=1 / 5
$$

$$
m_{4}=m_{2}=1 / 5
$$

$$
\frac{y-(-2)}{x-1}=1 / 5
$$

$$
y+2=1 / 5 x-1 / 5
$$

$$
\begin{aligned}
y=1 / 5 x-2 \frac{1}{5} & =0 \\
x & =11 \\
x \text {-interopt } & =11
\end{aligned}
$$

Kenya Certificate of Secondary Education, 2022
20. In the figure below, line $\mathrm{AB}=10 \mathrm{~cm}$ and is part of a trapezium ABCD . Point X is such that

(a) Using a ruler and a pair of compasses only:
(i) locate point D on line $A X$ such that $A D: D X \cong$ 3:1.
(ii) complete trapezium $A B C D$ such that line $D C$ is parallel to line $A B$ and angle
$\mathrm{ABC}=67.5^{\circ}$.
(3 marks)
(iii) draw a perpendicular line from D to meet $A B$ at E. Measure $D E$.

$$
D E=4.0 \text { aH } \pm 0.1 \mathrm{~cm}
$$

(b) Calculate the area of the trapezium $A B C D$.

$$
\begin{aligned}
A & =1 / 2 D E(A B+C D) & \Delta E=4 \mathrm{~cm}, \\
e^{j} & =1 / 2 \times 4(10+4) & C D=4 \mathrm{~cm} \\
e^{j} & &
\end{aligned}
$$

21. Thic amount of moncy, in Kenyn shillings, spent on airtime by a group of 30 people in a period of an hour was recorded as show,n below.

27	201	21	24	22	25
A2	24	. 55	26	30	39
25	AT	32	21	38	34
H	37	$2 T$	29	32	St
25	A4	25	\boldsymbol{H}	28	30

(a) Complete the frequency distribution table below.

Tally	HH	HHTII	[H1 IIII	Hftl	/1/	
Amount (Ksl)	20-24	25-29	30-34	35-44	45-59	
Frequency	5	7	9	6	3	$B 2$ for all 5 raluas r
10	1	1.4	1.8	0.65	0.2	$r_{t}(2 \text { marks })$

(b) On the grid helow, draw a histogram to represent the data, e

Kenya Certificate of Secondary Education. 2022
121/1
(c) Use the histogram to determine:
(i) The median amount of money spent on airtime by the 30 people.

$$
\begin{aligned}
& A=5 \times 1.0+5 \times 1.4+1.8 x=1 / 2 \times 30 \\
& 1.8 x=15-12=3 \\
& x=12 / 3 \text { or } 1.667 \\
& \text { Median }=29.5+1.667 \\
&=31.167 \\
& \approx 31.17
\end{aligned}
$$

(ii) the number of people who spent more than Kish- 44.50 on airtime over that period.

$$
5 \times 1.0+5 \times 1.4+5 \times 1.8+09 \times 0.6
$$

≈ 26 people.
22. The diagram below is a sketch of two cur es $y^{\prime}=2 r^{2}+1$ and $y=x^{2}+1$ drawn on the same grid.

(a) Using the trapezium rule with 5 strips, estimate the ara sounded by the curves $y=2 r^{2}+1, y=x^{2}+1$ and the lines $x=0$ and $x=0^{3}$.

x	0	1	2	3	4	5
$2 x^{2}+1=y_{1}$	1	3	9	19	33	51
$x^{2}+1=y_{2}$	1	2	5	10	15	26
$y=\left(y_{1}-y_{2}\right)$	0	1	4	9	16	25

$$
\begin{aligned}
A & =1 / 2\left\{(0+25)+2\left(x^{2}+4+9+16\right)\right\} \\
& =421 / 2 \text { sgis.ancts }
\end{aligned}
$$

(b) Using the mid ordinate rule with 5 strips, estimate the area bounded by the curves
$y=2 x^{2}+1, y+x^{2}+1$ and the lines $x=0$ and $x=5$.

x^{x}	0.5	1.5	2.5	3.5	4.5	
$2 x^{2}+1=y_{1}$	1.5	5.5	13.5	25.5	41.5	\checkmark
$x^{2}+1=y_{2}$	1.25	3.25	7.25	13.25	21.25	\checkmark
$\left(y_{1}-y_{0}\right)=y$	0.25	2.25	6.25	22.25	20.25	\checkmark

$$
\begin{aligned}
A & =1(0.25+2.25+6.25+12.25+20.25) \checkmark \\
& =41 / 4 \text { sq. Units }
\end{aligned}
$$

23. A. Supermarket ${ }^{2}$ sold 530 packets of milk daily when the price was K h 50 per packet.

Whenever the price per packet was increased by K sh o 4, the number of packets sold daily decreased by 20.

If n represents the number of times the price was increased:
(a) Write an expression in terms of 11 for:
(i) the price of a packet of milk after the price was increased.

$$
=(50+4 n) \checkmark
$$

(ii) the number of packets of milk sold after the price was increased.

$$
=(530-20 n) \Omega
$$

(iii) the total sales, in simplified expanded form, after the prices of a packet of milk
was increased.

$$
\begin{aligned}
S & =(50+4 n)(530-20 n) \\
& =-80 n^{2}+1120 n+26500 \\
S & =-80 n^{2}+1120 n+26500
\end{aligned}
$$

(b) Determine:
(i) the number of times the price was increased to attain maximum sales. (3 marks)

$$
\frac{d S}{d n}=0=0
$$

$$
e^{x^{S}}=7 \Omega
$$

(ii) he e price of a packet of milk for maximum sales.

$$
50+4 \times 7=78^{5} \mathrm{ksh} .
$$

(iii) the maximum sales.

$$
\begin{aligned}
S & =-80(7)^{2}+1120(7)+26500 \\
& =\text { ks. } 30420
\end{aligned}
$$

Kenya Certificate of Secondary Education. 2022
24. Triangle $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are drawn on the grid provided.

(a) Describe fully a single transformation that mapped triangle $A B C$ onto triangle $A^{\prime} B^{\prime} C^{\prime}$.

Enlargement, scale actor - 2 and centre $(0,0)$
(2 marks)

Kenya Certificate of Secondary Education, 2022
(b) On the same grid, draw:
(i) triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ the image of triangle $\wedge^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ under a rotation of $+90^{\circ}$ about $\mathrm{O}(0,0)$.
(2 marks)

$$
A^{\prime \prime}(8,2), B^{\prime \prime}(6,6), C^{\prime \prime}(2,4)
$$

(ii) triangle $A^{\prime \prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{m}$, the image of triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$ under a reflection in the line $y=-x$.

$$
A^{\prime \prime \prime}(-2,-8), B^{\prime \prime \prime}(-6,-6), C^{\prime \prime \prime}(-4,-2)
$$

(c) Draw the line of symmetry of triangle $A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and fence determine its equation in the form $y=m x+c$, where m and c are constants.

$$
\begin{aligned}
& (6,-6),(3,-5) \\
& \left.m=\frac{-5-(-6)}{3-6}=-\frac{1}{3}+\right)^{2} c=-4 \text { ? } \\
\therefore & y=-\frac{1}{3} x-4
\end{aligned}
$$

THIS IS THE LAST PRINTED PAGE.

