NAME	INDEX NO

CANDIDATE'S SIGN
DATE

232/3 PHYSICS PAPER 3 (PRACTICAL) MARCH/APRIL, 2023 TIME: 2¹/₂ HOURS

SUKELLEMO PRE-MOCKS APRIL 2023

INSTRUCTIONS TO CANDIDATES:

1. Write your name and index number in spaces provided above.

- 2. *Sign* and write the date of examination in spaces provided **above**.
- 3. Answer all the questions in spaces provided in the question paper.
- 4. You are supposed to spend the first 15 minutes of 2¹/₂ hours allowed for this paper reading the whole paper carefully before commencing the work.
- 5. Marks are given for clear record of the observations actually made, their suitability, accuracy and the use made of them.
- 6. Candidates are advised to record their observations as soon as they are made.
- 7. Mathematical table and electronic calculators may be used.

								
Question 1	(i)	(iv)	(v)	(vi)	(vii)	(ix)	(X)	
Maximum Score	1	4	5	2	4	2	2	20
Candidate's Score								

FOR EXAMINER'S USE ONLY

Question 2	(a)	b(i)	b(ii)	b(iii)	b(iv)	b(v)	c(iv)	c(v)	c(vi)	
Maximum Score	2	1	2	2	1	2	6	2	2	20
Candidate's Score										

GRAND	
TOTAL	

Question 1

You are provided with the following,

- ✤ Helical spring with a pointer
- One clamp, one stand and a boss
- ✤ A stop watch
- ✤ A metre rule or half metre rule
- One 50g, four 20g and one 300g masses

Proceed as follows;

 Suspend the spring vertically alongside the clamped metre rules shown in the figure below. Measure the length L₀, of the spring before loading it.

- (ii) Attach a mass of 20g on the spring and measure the new length L , of the spring. Record in the table below
- (iii) Calculate the change in the length , $e=L L_0$ due to the mass of 20g and record this in the table below.
- (iv) Repeat steps (ii) and (iii) using additional masses of 20g and record your results in the table below.

(v) Plot a graph of extension, **e** (cm) against the mass **m** (g)

(5 marks)

(vi)

- (vii) Using the same set up as in the figure above, attach the 120g mass on the spring and support it from below with your palm so that it does not oscillate.
- (viii) Pull the mass a small distance vertically downwards and release it to execute Vertical oscillations. Record in the table below the time, t, for 20 complete oscillations. Repeat to obtain a total of three readings i.e., t₁, t₂ and t₃. Repeat the procedure using a mass of 150g.

(4 marks)

	Time for 20 o	oscillations		Average time (s)			
Mass (g)	t ₁ (s)	t ₂ (s)	t3(s)	$t_1+t_2+t_3$ 3	T (s)	T ² (s ²)	$T^{2}/m (S^{2}g^{-1})$
120							
150							

(ix) Find the average value of Q, given that $Q = \frac{T^2}{m}$ let this be the Q (2 marks) (2 marks) (3 marks) (4 marks) (5 marks) (5 marks) (6 marks) (7 marks) (7 marks) (8 marks) (9 marks) (9 marks) (9 marks) (1 marks) (1 marks) (2 marks) (2 marks) (2 marks) (2 marks) (2 marks) (2 marks) (3 marks) (4 marks) (5 marks) (5 marks) (6 marks) (7 marks) (7 marks) (8 marks) (9 marks

Question 2

You are provided with the following.

- ✤ A carbon resistor X
- Resistance wire marked R
- Micrometer screw gauge (to be shared)
- ✤ Voltmeter
- ✤ Ammeter
- * Resistance wire mounted on a mm scale labelled L
- ✤ A cell and a cell-holder
- ✤ Centre zero galvanometer
- ✤ 8 connecting wires
- ✤ Jockey

Proceed as follows.

(a) Using the micrometer screw gauge, measure and record the diameter D of the resistance wire R provided.

(2 marks)

(b) Set up the following circuit

(i) Record the voltmeter reading when the switch is open

 $\mathbf{E} = \dots \mathbf{V} \tag{1 mark}$

(ii) Close the switch and record the voltmeter and ammeter readings V and I.

V =	V	(1 mark)
I=	A	(1 mark)

(c) Connect another circuit as shown below

- (i) Move the sliding pointer along the resistance wire until the galvanometer reading comes to zero. Record L_1 and L_2 .
- (ii) Obtain the value of the unknown resistance R given that; $\frac{R}{x} = \frac{L_1}{L_2}$ let it be **R**₁
- (iii) Interchange the positions of R and X and repeat the procedure in (i) above and calculate the value of R.

$$\frac{X}{R} = \frac{L_1}{L_2}$$
 let it be **R**₂

	Trial 1	L ₁ (cm)		R ₁ =	
		L ₂ (cm)			
	Trial 2 (after interchanging)	L1(cm) L2(cm)		R ₂ =	
(v)	Calculate the average val	ue of R		(2 marks)	1
(vi)	Given that, $R = \frac{35S}{100\pi D^2}$	determine the v	value of S	(2 mark	cs)

THIS IS THE LAST PRINTED PAGE.

