Name	ADMClass
School	Date
233/2	
CHEMISTRY	
Paper 2	
THEORY	
June 2023	

KASSU EXAMINATIONS

Kenya Certificate of Secondary Education

CHEMISTRY

Paper 2 THEORY

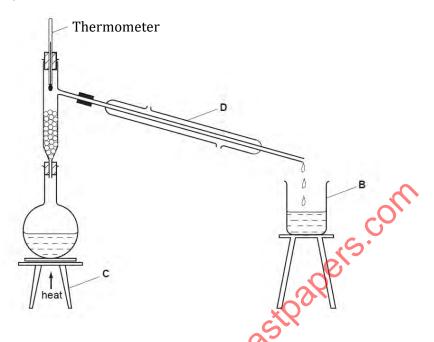
2 hours

Instructions

2 hours

- Write your name, Index number and class in the spaces provided above.
- Answer ALL the questions in the spaces provided.
- Mathematical tables and silent electronic calculators may be used.
- All working **MUST** be clearly shown where necessary.

For Examiner's use only


Question	Maximum	Candidate's
. N	Score	Score
1 1	10	
i sil	12	
11 3	14	
4	13	
5	10	
6	10	
7	11	
Total	80	

This question paper has 13 printed pages.

Confirm that all the pages are printed as indicated and

No questions are missing.

1. The diagram below was used to separate a mixture of liquid W (b.p = $110 \, ^{\circ}$ C) and liquid Z (b.p = $88 \, ^{\circ}$ C).

(a)	Name the apparatus labelled	BandC	3 X	(2 marks)
		VC)		

- (b) Using an arrow, indicate on the diagram where the water leaves apparatus D (1 mark)
- (c) Which liquid was collected in apparatus B first? Give a reason for your answer.
 (2 marks)
- (d) State the role of fractionating column in this experiment (1 mark)

(water, st	and & clamp, as that can be	copper (II) sulphate	crystals		ıeat. I	ork, ice cold Oraw a setup of Odrated Copper (3 marks)
		eam is passed	over heat	ed iron in	a combus	stion tube, a bl	ack sc	olid is formed.
						ormation of th		
2.	Study the sc	heme given b	elow and a	answer th	e question	that follow:-		
	Polymer Q	Polymer	ization -	Compo		→	Ni _	CH ₃ CH ₂ CH ₃
	CH ₃ CH ₂ CH ₂ OI		Na(s)	Propan	<u> </u>	O ₄ 180°C High ter		ppylethanoate
		jisit w		CH₃CH₂	COOH Na ₂ CO _{3 (}	aq)		
				Solution '	Γ + $CO_{2 (g)}$			
(a)	Compound l							(2 marks)

(ii) W	rite an equation for the reaction between CH3CH2COOH and Na2CO3	(1 mark)
(b)	State one use of polymer Q	(1 mark)
(c)	Name one oxidizing agent that can be used in step II	(1 mark)
(d) of mor	A sample of polymer Q is found to have a molecular mass of 4200 Determine nomers in the polymer $(H = 1, C = 12)$	the number
(e)	Name the type of reaction in step I	(1 mark)
(f)	State one industrial application of step III	(1 mark)
(g)	State how burning can be used to distinguish between propane and propyne. answer	(2 marks)

(h) 1000cm³ of ethene (C ₂ H ₄) burnt in oxygen to produce Carbon (II) Oxide and w Calculate the minimum volume of air needed for the complete combustion of contains 20% by volume of oxygen)				
3.	I. (a)	Sulphur exhibits allotropy. What is transition temperature?	(1 mark)	
	(b)	Briefly describe how an allotrope of Sulphur stable below 96°C can be prepared.	(2 marks)	
	(c)	Sulphur is used during vulcanization of rubber. State the role of Sulpl vulcanization of rubber.		
	(d)	Explain why old newspapers turn brown after sometime.	(1 mark)	
	(e)	State the observation made when Sulphur (IV oxide gas is bubbled int of acidified potassium dichromate (VI) in a boiling tube.	o a solution (1 mark)	

II. A rock was found in one of the valleys at Kilongolo. The rock was suspected to contain high percentage of zinc metal.

(a)	Explain how you could confirm that the rock contains zinc metal.	(3 marks)
(b)	Study the flow chart below and answer the following questions. Gas W Gas W Gas W	
	$\begin{array}{c c} \hline ZnCO_3 \\ \hline \end{array} \begin{array}{c} \hline \\ \hline ZnO \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \\ \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} $	ntrated H ₂ SO ₄ → Gas D
(i)	State the condition necessary for the reaction in step I to occur.	(1 mark)
 (ii) 	Name (a) Gas W -	(1 mark)
	(b) Gas D -	(1 mark)

(iii) When a current of 0.82A was passed for 5 hours through a solution of metal Z , 2 metal Z were deposited. Determine the charge on the ion of metal Z .			al Z , 2.65 g of	
			C, RAM of $Z = 52$)	(3 marks)
4.	(a)	Dete	rmine the electronic configuration of:	
		(i)	Oxygen in H_2O_2	(1 mark)
			Sulphur in SO_4^{2-}	(1 mark)
			رجي	
	(b)		cce of Magnesium ribbon was placed in a solution of copper (II beaker.) chloride
		(i)	State any one observation that was made.	(1 mark)
			161	
		(ii)	Write the ionic equation for the reaction that took place.	(1 mark)

The following are standard reduction potentials for some metals. The letters (c) do not represent the actual elements.

	E^{θ} (volts)
$A^{2+}_{(aq)} + 2e^{-} \longrightarrow A_{(s)}$	-2.93
$B^{2+}_{(aq)} + 2e^{-} \longrightarrow B_{(s)}$	-2.38
$C^{2+}_{(aq)} + 2e^{-} \longrightarrow C_{(s)}$	+0.34
$D^+_{(aq)} + 2e^- \longrightarrow D_{(s)}$	+2.87
$E^{2+}_{(aq)} + 2e^{-} \longrightarrow E_{(s)}$	+1.44

(i)	Which is the most reactive metal? Give a reason.	(2 marks)

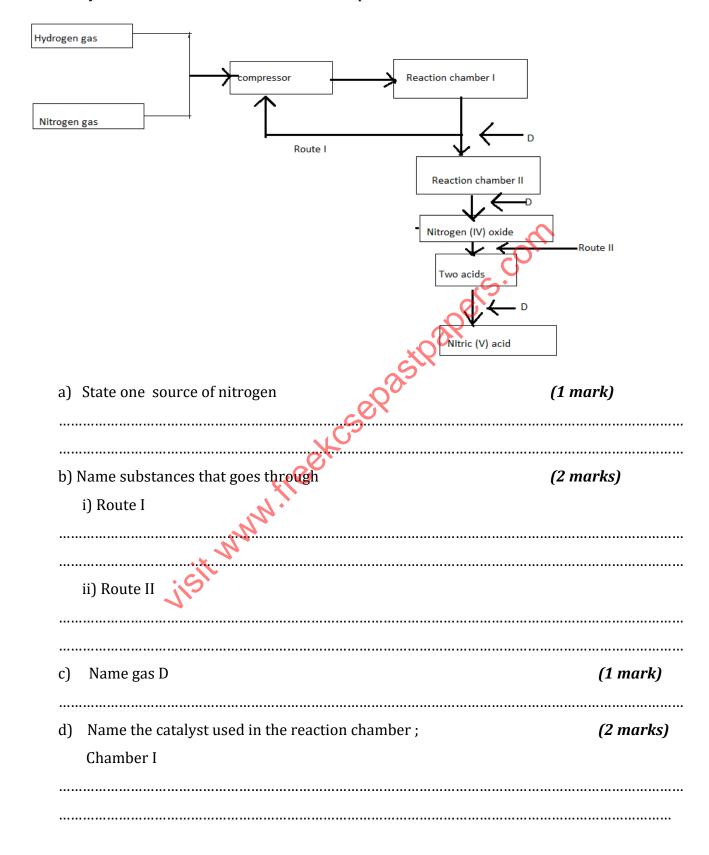
Draw electrochemical cell when A and D combine, indicate the flow of (ii) (3 marks) electron

(ii)	Calculate the e.m.f of the cell in (ii) above.	flow of (3 marks)
(iii)	Calculate the e.m.f of the cell in (ii) above.	(2 marks)
	1/2	
(iv)	Explain if it is advisable to store a solution containing \mathcal{C}^{2+} ions container made of D.	in a (2 marks)

5.	Define i)	the following terms as used in radio activity nuclear fission	(2 marks)
	ii)	Nuclear fusion.	
	(II)Stu	dy the information below and use it to answer the q	uestion that follows.

Time (days)	Mass of Radio Isotope		
0	800		
4.1	400		
8.2	200		
16.4	100		
24.3	50		

(a) Plot a graph of mass of Isotope (y-axis) against time (days)


32.4

(3 marks)

. ,	lse your graph t			_				
(i	i) Determin	e the half-life	of the Radio	Isotope			(1 mar	·k)
(i	(ii) The fraction of the original amount remains after 16.4 days					(1 mark)		
(c) If	f the sample con	tinues to dec	ay, predict h	ow long it v	will take to	decay to 2	 Zero. (1 m o	ark)
						W.		
	tate one applica i) History	ation of radio	activity in ;	~C	apers		-+(2 m	arks)
	ii) Medicine			2005				
			., 65	(,)				
. Stu	dy the ionizatio	n energies in	Kilojoules pe	er mole and	d answer th	e questio	ns below.	_
	Element	M.	1		ies in kJ/m			
		1 st	2nd	3rd	4 th	5 th	6 th	
	A	1590	2780	4700	6500	8100	12500	
	В	1010	1900	4900	5000	6300	7300	_
	С	940	4800	6300	9180	12000	1600	-
	D	1680	2010	3400	10900	12400	16500	
(a) (i) What is meant	by the term	Ionization er	nergy			(1 ma	rk)
(i	i) Identify the g	roup to which	n each eleme	nt belongs	to A, B, C, Γ)	(1 mar	······································

(iii)	Write the fo	ormula of the oxid	le of D.		(1 mai	′k)
(iv)	What type of	bond will be form	ned when C reac	ts with fluorine?	Explain <i>(2 mai</i>	rks
						••••
peri	od table and th	ves some physical eir chlorides. The ion and use it to a	letters used are	e not actual symb	ols of the eleme	
Γ	D1 .	14 le D	D III D I I	011 11		7
	Element	Melting Point	Boiling Point	Chloride	Chloride	
_	1.1	00	002	Formula	M.P (⁰ C)	-
	Н	98	883	ICl ₂	801 714	-
	I T	649	1107		190	-
	 К	660 1410	2467 2355	JCl ₃ KCl ₄	-70	-
	L L			LCl ₃	-70 -161	
-		110	280			-
	M	119	-38	MCl ₂	-78	-
_	N	-101		No compound	<u>-</u>	-
	0	-189	-186	No compound	<u>-</u>]
a) (i) E	Element K has a	very high melting		why?	(1 mar	*k)
		N				••••
(iv)	Explain wh	y element O has a		g point.	(1 mar	 rk)
(v)	Explain why	y O does not form	a chloride.		(1 mar	'k)
-		bonding and struc		_	(2 mar	
	oride	Bonding	g type	Туре	of structure	
ICl ₂						
MCl:	2.					

7. Study the flow chart below and answer the questions that follows

	Chamber II	
 e) 	Write equation for the reactions taking place in reaction chamber II	(1 mark)
 f) 	Identify the two acids formed above (2	marks)
g)	Write an equation for the reaction between one of the two acids above	e with reagent D
h)	State one use of nitric (V) acid (1	mark)
	isit www.treekcse	