Name: \qquad
\qquad
School: \qquad Venue \qquad Adm no: \qquad .Class: \qquad
\qquad
\qquad
233/3
CHEMISTRY PRACTICAL

Paper 3

JUNE 2023
TIME: $21 / 4$ HOURS

KASSUJET JOINT EXAMINATIONS 2023

Kenya Certificate of Secondary Education (K.C.S.E)
233/3
Chemistry Practical
Paper 3
$21 / 4$ Hours

INSTRUCTIONS TO CANDIDATES:

- Answer all the questions in the spaces provided in the question paper.
- You are NOT allowed to start working within the first 15 minutes of the $2 \frac{1}{4}$ hours allowed for this paper. Thistime is to enable you read the question paper and make sure you have all the chemicals and apparatus that you may need.
- All working MUST be clearly shown.
- Mathematical tables and silent scientific calculators may be used.
- This paper consists of 6 printed pages.
- Candidates should check to ascertain that all papers are printed as indicated and that no questions are Missing

For Examiner's Use Only:

Question	Maximum score	Candidate's score	Examiner's initials
1	22		
2	10		
3	8		
Total score	40		

This question paper has 6 printed pages. Confirm that all the pages are printed as indicated and No questions are missing.

1. (a) You are provided with the following solutions:

- Solution P, 1M hydrochloric acid
- Solution Q,1M sodium hydroxide

You are required to determine the molar heat of neutralization of hydrochloric acid.

Procedure

Measure $23 \mathrm{~cm}^{3}$ of P and put in a 100 ml beaker. Measure its temperature and record in the table I in the first column. Using a measuring cylinder, measure $5 \mathrm{~cm}^{3}$ of Q and add to P in the beaker. Stir with the thermometer and record the final steady temperature. Continue adding $5 \mathrm{~cm}^{3}$ of Q at a time and recording the temperature until $35 \mathrm{~cm}^{3}$ of P has been added and complete the table.

Table I

Volume of Q added $\left(\mathrm{cm}^{3}\right)$	0	5	10	15	20	25	30	35
Temperature $\left({ }^{\circ} \mathrm{C}\right)$								

(4marks)
(i) Plot a graph of temperature (vertical axis) against volume of sodium hydroxide, solution Q added.

(ii) From your graph determine:
I. Volume of 1 M NaOH needed to neutralize $23 \mathrm{~cm}^{3}$ of 1 M HCl

II. Rise in temperature $\Delta \mathrm{T}$.

(iii)Calculate the amount of heat evolved in the above reaction. (Take specific heat capacity of solution to be $4.2 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$, density of solution $1 \mathrm{glcm}{ }^{3}$)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iv) Calculate the number of moles of HCNused.
(1mark)
\qquad

\qquad
\qquad
(v) Hence, determine the molar heat of neutralization of hydrochloric acid.
(2 marks)
\qquad
\qquad
\qquad
\qquad
(b) You are provided with:

- Solution A, sodium hydroxide
-Solution C, 0.1 M hydrochloric acid
You are required to:
- Dilute solution A with distilled water
- Standardize the diluted solution \mathbf{A} with solution \mathbf{C}.

Procedure:

Fill the burette with solution C.
Pipette $25 \mathrm{~cm}^{3}$ of solution A into a $250 \mathrm{~cm}^{3}$ conical flask. Measure $175 \mathrm{~cm}^{3}$ of distilled water using a $100 \mathrm{~cm}^{3}$ measuring cylinder and add it to solution A in the conical flask. Shake well. Label this as solution D. Pipette $25 \mathrm{~cm}^{3}$ of solution D into a $250 \mathrm{~cm}^{3}$ conical flask. Titrate with solution \mathbf{C} using two drops of phenolphthalein indicator. Record your results in table II below. Repeat this procedure to obtain consistent values.

Table II

Final burette reading $\left(\mathrm{cm}^{3}\right)$	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution C used $\left(\mathrm{cm}^{3}\right)$			

(4 marks)
(a) Calculate the average volume ofsolution \mathbf{C} used.
(1mark)
\qquad
\qquad
(b) Calculate the concentration, in moles per liter, of the sodium hydroxide in solution \mathbf{D}.
(2mark)
\qquad
\qquad
\qquad
\qquad
(c) Calculate the concentration, in moles per litre, of the sodium hydroxide solution \mathbf{A}.
(1mark)
\qquad
\qquad
2. You are provided with solid E. Carry out the tests below and, record your observations and inferences in the spaces provided
a) Place half of solid E in a boiling tube add $10 \mathrm{~cm}^{3}$ of distilled water and shake

Observations	Inference		
	(1mark)		$(1$ mark)

b)
i) To about $1 \mathrm{~cm}^{3}$ of solution Add $\mathbf{2 M} \mathbf{N a O H}$ dropwise in excess

Observations	Inference
	$(1$ mark $)$
	(1mark)

ii) To about $1 \mathrm{~cm}^{3}$ of solution in a test tube and add 2-3 drops of acidified Barium nitrate
Observations
iii) To about $1 \mathrm{~cm}^{3}$ of sôlution, add 4-5 drops of acidified potassium manganate (VII) solution

Observations	Inference	
	$(1$ mark $)$	
	$(1$ mark $)$	

iv) Dip a clean glass rod in the remaining portion of the solution and ignite on a nonluminous flame.

Observations	Inference	
	(1 mark)	

3. You are provided with solid \mathbf{K}. Carry out the tests below and write your observation and inferences in the spaces provided.
(a) Place a spatula full of solid \mathbf{K} on a clean metallic spatula and ignite it in a nonluminous flame.

Observation	Inferences	
	$(112$ mark $)$	$(112$ mark $)$

(b) Place the remaining solid \mathbf{K} in a clean boing tube. Add about $6 \mathrm{~cm}^{3}$ of distilled water and shake. Divide the resulting solution into three portions.

Observation	Inferences
	$(1$ mark $)$
	$(1$ mark $)$

(i) To the first portion and 2 drops of acidified potassium manganate (VII).

Observation		
1 mark $)$	$(1$ mark $)$	

(ii) To the second portion, add all of the solid sodium carbonate provided.

Observation $\quad S^{\prime}$	Inferences	
	$(1$ mark $)$	$(1$ mark $)$

(iii) Using the third portion, determine the pH .

Observation	Inferences	
	$(11 / 2$ mark $)$	$(112$ mark $)$

