GT						
	<u>CEKENAS MOCK EXAMINATION, 2023</u>					
	Kenya Certificate of Secondary Education					
	<u>233/1</u>					
	IEMISTRY					
	per 1					
	<u>ieory)</u>					
TL	ME: 2 HOURS					
	STRUCTIONS TO CANDIDATES					
<i>1</i> .	All working must be clearly shown where necessary.					
2.	Mathematical tables and silent electronic calculations may be used					
1.	Give two difference between a thistle funnel and a dropping funnel	(2marks)				
1. 2.	Give names of the following processes used to	(2111a1KS)				
	Separate calcium carbonate from water	(1mark)				
a) b)	Separate a mixture of nitrogen and Helium	(1mark) (1mark)				
3.		(IIIIaIK)				
5.	Solution pH values					
	P 1.5					
	P 1.5 O 6.0					
	Q 6.0 R 14.0					
	S 8.0					
	The table below shows some solutions and their pH value Solution pH values P 1.5 Q 6.0 R 14.0 S 8.0 Which of the above solutions is likely to be of Sodium carbonate					
a)	Sodium carbonate	(1mark)				
a) b)	Solution with high concentration of Hydrogen ions	(1mark)				
4.	In the laboratory preparation of oxygen gas, Hydrogen peroxide is used.	(IIIIdIK)				
ч. a)	Name the catalyst used	(1mark)				
b)	Write a balanced chemical equation for the reaction	(1mark)				
5.	State three observation made when a piece of potassium metal is dropped into cold water giving a rea					
5.	State three observation made when a prece of polassian metal is dropped into cold water giving a rec	(3marks)				
6.	In the extraction of iron, the iron ore is reduced to iron in a blast furnace	(Sindiks)				
a)	Name the main ore used in extraction of iron	(1mark)				
b)	What is the main reducing agent in the blast furnace	(1mark)				
c)	Write the equation for the reaction through which the iron ore is reduced to iron in the blast furnace	. (1mark)				
7.	Draw the structure of the following	. (1111111)				
a)	Mg ⁺	(1mark)				
b)	Hydroxonium ion	(1mark)				
8.	When 27.8g of hydrated aluminium oxide $(Al_2O_3 \bullet XH_2O)$ was heated to a constant mass 20.6 g	. ,				
0.						
0	oxide was obtained. Determine the value of X (Al=27, O=16, H=1)	(3marks)				
9.	In the Haber process, the industrial manufacture of ammonia is given by the follow $N = N = 0$	ing equation				
	$N_{2(g)} + H_{2(g)} \implies 2NH_{3(g)} \Delta H = -97 kJ / mol$					
a)	Name one source of nitrogen gas used in this process	(1mark)				
b)	Name the catalyst used in the above reaction	(1mark)				
c)	What is the effect of increasing temperature on the yield of ammonia? Explain	(2marks)				
	Describe the correct process of heating a liquid in a test-tube using a bunsen burner.	(3marks)				
11.	Draw a labelled diagram of a set up that can be used to prepare dry sample of carbon (IV) oxide u	-				
	carbonate	(3marks)				
12.	a) Draw structural formulae of two positional isomers with molecular formula C_4H_8	(2marks)				
	b) Study the equation below and answer the questions that follow					
	$C_6H_{14} + Cl_2 - C_6H_{13}Cl + HCl$					
	i) State the condition under which this reaction occurs	(1mark)				

CEKENAS MOCK EXAMINATION, 2023 Kenya Certificate of Secondary Education 233/2 Chemistry PAPER 2 (Theory) **TIME: 2 HOURS** The grid below represents part of the periodic table. Study it and answer the questions that follow. 1. The letters do not represent the actual symbol of elements. G V I Κ J L Μ (1mark) a) i) Select elements which belong to the same chemical family ii) Write the formulae of ions for two elements in the same period (1mark) b) The first ionization energies of two elements K and M at random are 577kJ/mol and 494kJ/mol. Write equations for the 1st ionisation energies for elements K and M and indicate their energies i) (2marks) ii) Explain the answer in b (i) (1mark) iii) Write the formula of the compound formed when I and L react (1mark) iv) Give one use of element L (1mark) (2marks) c) I) How do the reactivity of elements K and L compare? Explain II) Element L and M form chlorides. Complete the table by writing the formulae of each chloride and state the nature of the solutions (2marks) Element Formula of chloride Nature of chloride solution L Μ III) The chloride of element M vaporizes easily while its oxide has a high melting point. Explain (2marks) IV) Which elements forms a trivalent: a) Cation $(\frac{1}{2}mark)$ Anion $(\frac{1}{2}mark)$ b) The following is a structure of an organic compound. 2. i) O II CH₃CH₂C-O-CH₂CH₃ Which organic series does the compound belong? (1mark) a) b) Give the structures and names of the reactants that form the above compound (2marks) The table shows structural formula of some organic compounds ii) Compound Structural formula А CH₃CH₂CH₂CH₃ В CH₃CH₂COOH С CH₃CHCH₂ D CHCCH₃ E CH₃CH₂CH₂CH₂OH Give the chemical test that can be used to identify compound C. (1mark) a) Compare the boiling points of compound E and A (2marks) b) (2marks) State and explain the observation made when Sodium carbonate is added to compound G. c) d) Write an equation to show the reaction between compound E and magnesium metal and give the name of the product formed. (2marks) The following is a structure of a section of a polymer e) $\begin{array}{c} COOCH_3 & COOCH_3 & COOCH_3 \\ \hline COOCH_3 & COOCH_3 & COOCH_3 \\ \hline COOCH_2 & - C - CH_2 - C - CH_2 - C \\ \hline CH_2 & CH_2 & CH_2 \\ \hline CH_3 & CH_3 & CH_2 \end{array}$

	i)	Draw the structure of the monomer	(1mark)
		Give the name of the polymer	(1mark) (1mark)
		State one use of the polymer.	(1mark)
3.	,	Dry chlorine gas was passed over heated iron resulting in P. P was dissolved in water rest formation of a solution of P. To a little of the solution P a few drops of Sodium hydroxide was	•
	I)	solid Q was obtained. Name substance P and Q	(2marks)
	I	Write equations to show how substances P and Q were formed.	(2marks)
	III)	Name a suitable drying agent for chlorine gas	(1mark)
	b)	Chlorine burns in dry ammonia gas as shown in the diagram below.	. ,
		White fumes	
	i)	Identify solid N	(1mark)
		A colourless and odourless gas is produced. Identify the gas	(1mark)
	iii)	Write the equation for the burning of chlorine in dry ammonia gas	(1mark)
	iv)	3g of divalent metal X (atomic mass=24) react with dilute hydrochloric acid.	
		Calculate the volume of hydrogen gas produced at STP. (X=12, H=) molar gas volume at STP=2	
	v)	When excess chlorine was bubbled into hot concentrated sodium hydroxide, the following reaction	(3marks)
	•)	$3Cl_{2(g)} + 6NaOH_{(aq)} \rightarrow NaClO_{3(aq)} + 5NaCl_{(aq)} + 3H_2O_{(aq)}$. In which product did chlorine un	
		Explain Explain	(2marks)
			(2111d1K5)
4.	a)	Aqueous potassium sulphate was electrolysed using platinum electrodes in a cell.	
	i)	Shows the product formed at the anode and cathode with the help of an equation	(2marks)
		Anode	
	ii)	Cathode Why would it not be advisable to electrolyse aqueous potassium sulphate using potassium met	al electrodes?
	11)	why would it not be advisable to creationyse aqueous potassium suphate using potassium met	(1mark)
	b)	Use the standard electrode potential for elements A, B, C, D and F given below to answer that for	llow;
		E^0 (volts) \checkmark	
	$A_{(a)}^2$	$\frac{1}{2} + 2e^{-}$ -2.90	
		$\frac{2^{2+}}{2q^2} + 2e^-$ -2.38	
	```	(4)	
	$D_{(a)}^{-}$	$e^{2+}_{aq)} + 2e^{-}_{q)} = -0.34$	
	$\frac{1}{2}I$	$F_{2(g)} + e^{-} + 2.87$	
	I)	Which element is likely to be hydrogen? Explain	(1mark)
		What is the E ^o value of the strongest reducing agent?	(1mark)
		In the space provided draw a labelled diagram of the electrochemical cell that would be formed	when the half
	π	cells of elements B and D are combined.	(3marks)
		Calculate the E ^o value of the electrochemical cell constructed in (III) above During electrolysis of aqueous copper (ii) sulphate using copper electrodes, a current of 0.2 amper	(1mark)
	0)	through the cell for 5 hours.	es was passed
	i)	Write an ionic equation for the reaction that took place at the anode	(1mark)
	ii)	Determine the change in mass of the anode which occurred as a result of electrolysis	
		[Cu = 63.5, I Faraday = 96500C]	(1mark)



# **CEKENAS MOCK EXAMINATION, 2023**

Kenya Certificate of Secondary Education 233/3

**CHEMISTRY** Paper 3

# **CONFIDENTIAL / REQUIREMENTS**

- 1. Solid E
- 2.  $50 \text{ cm}^3 \text{ of solution F}$
- 3. 80cm³ of solution H
- 4. 0.5g of solid K
- 5. 0.5g of solid L
- 6. Distilled water
- 7. Burette
- 8. Pipette
- 9. Pipette filter
- 10. Label
- 11. 250ml volumetric flask
- 12. Two 250ml conical flasks
- 13. Test tube holder
- 14. 2 boiling tube
- 15. 6 test tubes
- 16. Stopwatch
- 17. 10ml measuring cylinder
- 18. Spatula
- www.treekcsepastpapers.com 19. 0.5g sodium hydrogen carbonate
- 20. 5cm³ of ethanol
- 21. Filter paper -3 pieces
- 22. Filter funnel
- 23. Blue and red litmus paper

# Access to

- 1. 0.1M BaCl₂
- 2. 2M HCl
- 3. 2M Ammonia solution
- 4. 2M NaOH
- 5. 2M H₂SO₄ acid
- 6. Source of heat
- 7. Phenolphthalein indicator

# **Preparations**

- 1. Solid E 5cm magnesium ribbon
- 2. Solution F 2M HCl
- 3. Solution H 0.375M NaOH
- 4. Solid K sodium benzoate
- 5. Solid L Ammonium aluminium sulphate

# **CEKENAS MOCK EXAMINATION, 2023** Kenya Certificate of Secondary Education 233/3 Chemistry

(PRACTICAL) Paper 3 TIME: 2¹/₄ HOURS

# **INSTRUCTIONS TO CANDIDATES**

- Answer all the questions in the spaces provided 1.
- 2. All working must be clearly shown where necessary.
- 3. You are not allowed to start working with the apparatus for the first 15 minutes. This time is to enable you read the question paper and make sure you have all the requirements.
- 1. You are provided with:
  - Magnesium ribbon solid E
  - 2M hydrochloric acid, solution F
  - 0.375M sodium hydroxide, solution H
  - You are required to determine
- The rate of reaction between magnesium and hydrochloric acid i)
- ii) The mass of 1cm length of magnesium ribbon

# **PROCEDURE 1**

- Step 1: Cut out five pieces of exactly 1cm length of magnesium ribbon solid EC arefully fill the burette with solution E.
- Step 2: Drain from the burette 10cm³ solution F into a test tube. Put one piece of magnesium ribbon into the tube and immediately start a stopwatch. Record the time taken for the magnesium ribbon to completely react.
- Step 3: Transfer all the contents of the test tube into a 250ml volumetric flask. Rinse the test tube with distilled water and put in into the volumetric flask.
- Step 4: Repeat step 2 and 3 by placing 9cm³ of solution F and 1cm³ of distilled water shake the contents before use. After each experiment transfer the mixture into the volumetric flask. Repeat the procedure using contents in test tube 3, 4 and 5 as shown in the table below. RETAIN THE SOLUTION IN THE VOLUMETRIC FLASK FOR USE IN PROCEDURE II **s**1

Table ]	I
---------	---

abic 1						
Test tube number	1	2	3	4	5	
Volume of solution F(cm ³ )	10	9	8	7	6	
Volume of water added (cm ³ )	0	1	2	3	4	
Time taken (seconds)						
$\frac{1}{t}(\sec^{-1})$						

 $\left|\frac{1}{4}\right|$ , against volume of solution F. Plot a graph of rate i) a)

ii) Use the graph to determine the time taken for 1cm length of magnesium to dissolve if volume of water added is  $1.5 \text{ cm}^3$ . (2mks)

(5mks)

(3mks)

(2mks)

(4mks)

iii) a) In terms of rate of reaction, explain the shape of the graph

# **PROCEDURE II**

Add distilled water into the solution in the 250ml volumetric flask up to the mark. Label it as solution G. Clean the burette and fill it with Sodium hydroxide, solution H.

Pipette 25cm³ of solution G into 250ml conical flask. Add 2 drop of phenolphthalein indicator and titrate it with solution H from the burette.

## Record your results in table below Table II

	Ι	II	III	
Final burette reading (cm ³ )				
Initial burette reading (cm ³ )				
Volume of solution H used (cm ³ )				

b)	Determine the		<i></i>
i)	Average volume of solution H used.	3 for lation C	(1mk)
ii)	Number of moles of hydrochloric acid in 250cm Number of moles of hydrochloric acid solution F		(2mks) (2mks)
	The mass of magnesium ribbon that reacted. (Mg		(2mks)
$\mathbf{v}$	Mass of 1cm length magnesium ribbon.	5 - 17.	(1mk)
	5 5		
2.	You are provided with solid K. Carry out the for	ollowing tests and record your observations a	nd inferences in the
	spaces provided. Place all solid K into a boiling tube. Add about 5	and of distilled water and shales the ministrum	
a)	Observation	Inferences	
	(1mk)	(1mk)	
b)	To about 2cm ³ of the solution K, add half a spat	ula of sodium hydrogen carbonate	
0)	Observation	Inferences	
	(½mk)	(½mk)	
c)	To the remaining solution K, add about 10cm ³ of	dilute hydrochloric acid Shake thoroughly Fi	lter the mixture then
0)	wash the residue with distilled water. Dry the res		ner the mixture then
i)	Place one third of the residue into a test tube. Ad		e mixture. Add half a
	spatula sodium hydrogen carbonate.		
	Observation	Inferences	
	(1/1-)		
	(½mk)	(½mk)	
ii)	To the remaining residue add 5cm ³ of distilled w	rater then 5cm ³ of sulphuric (VI) acid, follower	d by 5cm ³ of ethanol
	and warm the mixture.		
	Observation	Inferences	
	(1mk)	(1mk)	
3.	You are provided with solid L carry out the follo	wing test and record your observations and in	ferences in the space
	provided.		
a)	Place one third of the solid L in a dry test tube. H		l red litmus paper.
	Observation	Inferences	
	(2mks)	(1mk)	
	(2mks)	(IIIIK)	
b)	Place the remaining solid L in a boiling tube. Ad	ld about 10cm ³ of distilled water and shake. D	Divide the solution in
	to four portions.		
i)	To about 2cm ³ of solution L add 2 drops of bariu		
	Observation	Inferences	
	(1mlr)	(1mk)	
ii)	(1mk) To about 2cm ³ of solution L add 5 drops of dilute		
11)	Observation	Inferences	
	(1mk)	(½mk)	
iii)	To 2cm ³ of solution L add ammonia solution dro	·	
	Observation	Inferences	
	(1  mk)	(1mk)	
iv)	To 2cm ³ of solution L add sodium hydroxide dro	(1mk)	
1.1	Observation	Inferences	
	(1mk)	(½mk)	

	STERN CLUSTER EVALUATION - 2023 nya Certificate of Secondary Education (K.C.S.E)	
233	• • • •	
	EMISTRY THEORY	
	per 1	
111	ne: 2 Hours	
INS	STRUCTIONS TO CANDIDATES	
•	Answer all the questions	
•	Mathematical tables and Electronic calculators may be used.	
•	All working must be clearly shown where necessary	
1.	Distinguish between a thistle funnel and a dropping funnel	(1mark)
2.	a) What is an acid.	(1mark)
_	b) An ammeter was used to test electrical conductivity of sodium hydroxide and ammonia solu explain the observations made.	(2marks)
3.	An unknown rock X was discovered in Ukambani. Test with dilute sulphuric (VI) acid shows rapid with production of a colourless gas A that forms a white precipitate with lime water (calcium l	ydroxide) and
	colourless solution B. On adding 3cm ³ of 2M sodium hydroxide to a simple of solution B, a white formed that dissolves to form a colourless solution D on adding more sodium hydroxide. On addin	
	ammonia, a white precipitate E is formed which dissolves in excess aqueous ammonia. On adding 5	
	(II) nitrate to a sample of solution B a white precipitate G is formed which remains on heating.	
	Identify:	(3marks)
a)	Gas A d) Solution D 2	
b)	Solution B e) Precipitate E	
c) 4.	Precipitate C f) Precipitate G Potassium sulphite solution was prepared and divided into two portions. The first portion gave a w	hita praginitata
,	when reacted with lead (II) nitrate. On addition of dilute nitric (V) acid the white precipitate disapped	eared.
a) b)	Give the identity of the compound which formed as the white precipitate.	(1mark)
0)	Write the equation for the reaction between dilute nitric acid and the compound whose formula above.	
c)	What observation would be made if one drop of potassium dichromate solution was added to the	
,	followed by dilute sulphuric (VI) acid?	(1mark)
5.	a) What name is given to the process by which an alkanol is formed from a carbohydrate?	(1 mark)
	b) Explain why the solubility of ethane in water is lower than that of ethanol.	(1 mark)
6.	Study the standard reduction potential given and answer the questions that follow.	
	(The letters are not the actual symbols of the elements). $E^{o}$ (volts)	
	$M^{2+}_{(aq)} + 2e \rightarrow M_{(s)} -0.76$	
	$N^{2+}(_{a\alpha}) + 2e \rightarrow N_{(s)}$ -2.37	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$Q^{2+}{}_{(aq)}$ +2e $\rightarrow$ $Q_{(s):}$ -0.14	
a)	The standard reduction potential for Fe ²⁺ (aq) is -0.44 volts. Explain why M would be more effective	
1 \	iron from rusting than P.	(2  marks)
b)	Calculate the E ^{$\alpha$} value for the cell represented as $M_{(s)} / M^{2+}_{(aq)} / / P^{+}_{(aq)} / P(s)$ .	(1 mark)
7.	<ul> <li>(a) State Charles's law.</li> <li>(b) A sealed glass tube containing air at s.t.p was immersed in water at 100°c. Assuming that there was a state of the state of the</li></ul>	(1mark) vas no increase
	in the volume of the glass tube due to the expansion of the glass, calculate the pressure of t	
	(Standard pressure = 760 mmHg, standard temperature = 273K) (2mai	
8.	a) Methane reacts with oxygen as shown by the equations I and II below:	<i>,</i>
	I $CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(1)$	
	II $2CH_4(g) + 30_2(g) \longrightarrow 2CO(g) + 4H_2O(l)$	
	Which one of the two reactions represents the complete combustion of methane? Explain.	$(1\frac{1}{2} \text{ marks})$
	b) 80cm ³ of methane was reacted with 150cm ³ of oxygen forming carbon (IV) oxide and water.	
	If the resultant mixture was allowed to cool to room temperature: Calculate the volume of:	
	(i) Carbon (IV) oxide formed	(1 mark)



17. i) In an experiment to determine solubility of solid P in water at 25°C, the following results were of	obtained.
Mass of empty evaporating dish = $24.2g$	
Mass of evaporating dish + saturated solution = $40.4g$	
Mass of evaporating dish + dry solid $P = 28.4g$	
Using the information above calculate the solubility of solid P at 25°C in g/100g of water.	(2marks)
ii) State one precaution observed when carrying out the experiment in (i) above 1	(1mark)
18. i) On complete combustion of a hydrocarbon 0.88g of carbon (iv) oxide and 0.36g of water were f	
calculate the molecular formula of the hydrocarbon given that relative molecular mass of the hydrocarb	
is 70. ( $C = 12$ , $H = 1$ , $O = 16$ )	(2marks)
ii) Draw the structural formula of the hydrocarbon in (i) above and give its name	(1mark)
19. The table below shows solutions and their PH values.	
Solution PH value	
L 2.0	
M 7.0	
N 14.0	
i) Select two solutions that will react with calcium metal. Give a reason.	(2marks)
ii) Which solution is likely to be that of sodium chloride solution?	(1mark)
	(IIIIaIK)
20. During the extraction of aluminium, cryolite is added to molten aluminium oxide.	
i) State the function of cryolite during the process	(1mark)
ii) Give two reasons why aluminium is used in making overhead cables.	(2marks)
21. The diagram below represents a paper chromatogram of pure inks marked 1, 2, 3 and 4.	
Ink 5 is a mixture that contains inks 1 and 4 only.	
link 5 is a mixture that contains links 1 and 4 only.	
Solvent front 7 ⁺	
1 2 3 4 5	
a) Cive a masser why intr 1 mayor factor to the advant front then intr 2	$(1 m \circ m l_r)$
a) Give a reason why ink 1 moves faster to the solvent front than ink 2.	(1mark)
b) Show on the chromatogram diagram the	
(i) chromatography of ink 5.	(1mark)
(ii) The baseline	(1mark)
22. (a) What is the half life?	(1mark)
(b) X g of a radioactive element was reduced to 12.5g in 15.6years. If the half life of the element is 3	
	•
Calculate the value of X.	(2marks)
23. Study the table below and answer the question that follow. The letters do not represent the actual	symbols of the
element.	
Formula of ion Electron configuration	
$W^{2+}$ 2	
V ²⁻ 2.8	
$X^{3+}$ 2.8	
$U^{2+}$ 2.8	
Y- 2.8.8	
a) Select letters representing elements found in;	
	(1monte)
i) The same group and name the group	(1mark)
LettersGroup	
ii) Period three and name the period.	(1mark)
LettersPeriod.	
b) What is the family name given the group members to which element Y belongs	(1mark)
	· · · ·
24. Both anhydrous calcium chloride and anhydrous copper (II) sulphate are put in separate petri dishes in	i me iaboratory
and left overnight.	
a) What was the observable difference made in the morning?	(2marks)



#### **EASTERN CLUSTER EVALUATION - 2023** Kenya Certificate of Secondary Education (K.C.S.E) 233/2CHEMISTRY PAPER 2 TIME: 2 HOURS **INSTRUCTIONS TO CANDIDATES** 1 Answer all the questions 2. KNEC or electronic calculators may be used in calculations. 3. All working MUST be shown clearly where necessary. The table below shows some elements in the periodic table. Use it to answer the questions that follow. 1. The letters are not the actual symbols of the elements. F E В А G D С ers.com Select the most reactive metal. Explain. (1mk)i) ii) Write the formula of the compound formed between element G and D. (1mk)iii) Compare the following with explanations: The electric conductivity of A and E. I) (2mks)II) The atomic radius of B and D. (2mks)iv) Which element has the highest ionisation energy? Explain. (2mks) Show on the periodic table above an element Z belonging to period 4 and group VI. (1mk)v) vi) Element C has relative atomic mass of 40.2 and has two isotopes of mass 39 and 42. Calculate the relative abundance of each isotope. (3mks) The scheme below shows a series of reactions starting with propan-I-ol. Study it answer the questions that follow. 2. Solution $A+H_{2(g)}$ Potasium metal CH₃CH₂COONa Propan-I-ol Step I CH₃CH₂COOH NaOH CH₃CH₂CH₂OH MnO₄/H⁺(aq) Step III Step II Step IV Butan-I-ol CH₃CH₃ Compound E CH2=CHCH2 HCl $(conc.H_2SO_4/heat)$ 1 mole $Cl_{2(s)}$ Compound B: Product $C + H_2O$ Compound D + HC CH₃ CH CH2 Name the type of reaction that takes place in: a) Step I (1mk)Step II (1mk)i) ii) Write the equation for the reaction that takes place in step III. b) (1mk)c) Name the substances labelled: A, C, D and E. (2 mks) d) Draw the structural formula of the product C. (1mk)Name the process in step IV (1mk)e) Name compound B and state the type of reaction involved in its formation. f) (2mks)If the relative molecular mass of B is 35700, determine the value of **n**. (2mks)**g**)





Page | 25

<ul> <li>i) Identify the following:</li> <li>I) Gas Q</li> <li>II) Electrode R</li> </ul>	(1mk)
	(1mk)
<ul><li>III) Liquid P</li></ul>	(1mk) (1mk)
iii) State the role of the following in the cell.	(IIIIK)
I) Calcium chloride	(1mk)
II) Steel diaphragm	(1mk)
iv) State one use of sodium metal.	(1mk)
c) i) Give the name and formula of the major ore from which copper is extracted.	(1mk)
ii) Draw a diagram of a set up used in the electrolytic purification of blister copper.	(2mks)
EASTERN CLUSTER EVALUATION - 2023 Kenya Certificate of Secondary Education (K.C.S.E) 233/3 CHEMISTRY PRACTICAL Paper 3	
CONFIDENTIAL INSTRUCTIONS TO SCHOOLS	
<ul> <li>In addition to the normal fittings and apparatus in the laboratory, each candidate would need</li> <li>Solid P in a boiling tube</li> <li>Water bath</li> </ul>	the following:
<ul> <li>100 cm³ of solution Q</li> <li>1 Burette</li> <li>1 Burette</li> <li>4 cm³ liquid G supplied in a</li> </ul>	t a at task a
	lest tube
<ul> <li>1 Pipette</li> <li>1 Filter funnel</li> <li>6 test tubes in a test tube rac</li> </ul>	1_
<ul> <li>I Label</li> <li>Distilled water in a water bo</li> <li>Distilled water or a water bo</li> </ul>	tue
<ul> <li>1 Pipette filler</li> <li>1 Thermometer</li> <li>2 Filter papers</li> <li>10cm³ measuring cylinder</li> </ul>	
<ul> <li>1 Conical flask</li> <li>1 wooden splint</li> </ul>	18
<ul> <li>1 Test tube holder</li> <li>1 Watch glass</li> </ul>	
<ul> <li>250 cm³ volumetric flask</li> <li>1 Conical flask</li> <li>1 Test tube holder</li> <li>1 Test tube holder</li> <li>1 Watch glass</li> <li>1 Watch glass</li> </ul>	
ACCESS TO	
Source of heat	
• 2M ammonia solution supplied with a dropper	
Sodium chloride solution supplied with a dropper	
Barium nitrate solution supplied with a dropper	
• Nitric(v)acid supplied with a dropper	
Acidified potassium manganate (vii) supplied with dropper	
Universal indicator supplied with a dropper	
• pH chart	
PREPARATION	
Solution Q is 0.2M sodium hydroxide	
<ul> <li>Solid P is 4.5 g oxalic acid supplied in a boiling tube</li> </ul>	
<ul> <li>Solid E is a mixture of 0.5g aluminium sulphate and 0.5 g zinc carbonate.</li> </ul>	

• Liquid G is 4 cm³ of ethanol supplied in a stoppered test tube

## **INSTRUCTIONS TO CANDIDATES**

- Answer **all** questions.
- You are not allowed to start working with the apparatus for the first **15 minutes** of the 2 ¹/₄ hours allowed for this paper. This time is to enable you to **read** the questions paper and **make sure** you have all the chemicals and apparatus that you may need.
- All working **must** be clearly shown where necessary.
- 1. You are provided with:-
- 4.5g of solid P in a boiling tube.
- Solution Q, 0.2M sodium hydroxide.
- Phenolphthalein indicator.

You are required to determine:

- (i) Solubility of solid **P** at different temperatures.
- (ii) The value of **n** in the formula  $(HX)_n \cdot 2H_2Oof$  solid P.

### **Procedure I**

(a) Fill the burette with distilled water. Using the burette, add 4.0cm of distilled water to solid P in a boiling tube. Heat the mixture in a water bath while stirring with a thermometer to about 70°C until all the solid dissolves.

;s.on

(5 mks)

(3mks)

(1mk)

(1mk)

- (b) Allow the solution to cool while stirring with the thermometer and note the temperature at which crystals of solid P start to appear. Record this temperature in table I.
- (c) Using the burette, add 2.0cm³ of distilled water to the contents of the boiling tube. Heat the mixture in a water bath while stirring with the thermometer until all the solid dissolves.
- (d) Allow the mixture to cool while stirring and note the temperature at which crystals of solid P start to appear.
- (e) Repeat the procedure (c) and (d) three more times, heating the solution in a water bath and record the temperature in the table I. *Retain the contents of the boiling tube for use in procedure II.*
- (f) Complete the table by calculating the solubility of solid P at the different temperatures. (The solubility of a substance is the mass of that substance that dissolves in 100cm³ (100gm) of water at a particular temperature.)

TA	BL	Æ	Ι

ADLLI		
Volume of water in boiling	Temperatures at which crystals of	Solubility of solid P (g/100g of
tube (cm ³ )	solid P first appear ( ⁰ C)	water)
4		
6		
8		
10		
12		

- (i) On the grid provided, plot a graph of solubility P against temperature.
- (ii) Using your graph, determine the temperature at which 100g of solid P would dissolve in 100cm³ of water.

(iii) Determine the solubility of solid P at 55°C.

## **Procedure II**

- Transfer the contents of the boiling tube from Procedure I into 250ml volumetric flask. Rinse the boiling tube and the thermometer with distilled water and add to the volumetric flask.
- Add more distilled water to make up the mark. Label this solution P.
- Fill the burette with solution P. Using a pipette and pipette filler place 25.0cm³ of solution Q into a conical flask.
- Titrate solution Q with solution P using phenolphthalein indicator.

	<u>Tab</u>	le II				
1			Ι	II	III	
1		Final burette reading cm ³				
		Initial burette reading cm ³				
		Volume of <b>P</b> used cm ³				
		culate the:			`	4mks)
i)		rage volume of solution P used in				1mk)
		nber of moles of sodium hydroxic				1mk)
111)	Con	centration of solution P in moles	per dm ³ given that	the relative formula mas	. ,	
iv)		nber of moles of (HX) n•2H2O use			Ì	2mks) 1mk)
<b>v</b> )		number of moles of sodium hyd	roxide required to	react with one mole of		
	torn	nula $(HX)_{n}$ •2H ₂ O.			(	1mk)
2.		are provided solid E. Carry out	the following tests	s and write your observa	tions and inferences in	the spaces
a)		<i>v</i> ided. Place all of solid E in a boiling tu	he Add about 10c	$m^3$ of distilled water and	shake thoroughly	
<i>a)</i>		Filter the mixture into another bo				
		Observations		Inference		
	••	1mk	C C1	1mk		<u> </u>
		Dry the residue obtained using pi				
		the residue strongly and test any good backward of the strong str	gas produced using	Inference	pers and a burning spin	Int.
		Observations		Interence		
		1mk		1mk		
b)		Divide the filtrate obtained in a(i)	) above into four p	ortions. To the first portion	on add sodium hydroxi	ide solution
		drop wise until excess.				
		Observations		Inference		
	••	1mk		Umk		
	ii)	To the second portion add ammor Observations	hia solution drop w	Inference		
		Observations	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
		1mk		1mk		
	iii)	To the third portions add sodium	chloride solution.			
		Observations		Inference		
		1 mb		1		
	:)	1mk To the fourth portion add barum	nituate colution th	1mk		
	iv)	Observations	intrate solution, in	Inference		
		Observations				
		1mk		1mk		
2	v		test tribe C		-)	1
3.		are provided with liquid G in a rences in the spaces provided. De			b) and write the observ	vations and
a)		the about 2cm ³ of liquid G in on a c				
<i>u)</i>	1 140	Observations	cheek gluss und igi	Inference		
		1mk		1mk		
b)	i)	To the remaining liquid G in a te	st tube, add 3 $cm^3$		Use the mixture obtain	ned to carry
		out tests b(ii) and c				
		Observations		Inference		
		1mk		1mk		
	ii) T	o 2cm ³ of the mixture add 2 drop	s of potassium mai	nganate (vii). Warm the r	nixture.	
1		Observations		Inference		
1		1mk		1mk		
c)	To	$2 \text{ cm}^3$ of the mixture determine the	pH value.	THIN		
	104	Method used		Inference		
		1 mk		1mk		

LUGARI JOINT EVALUATION EXAMINATION, 2023 233/1 Chemistry Paper 1 2 hours	
Instructions to candidates c) Answer all the questions. d) All working MUST be clearly shown.	
e) KNEC mathematical tables and silent non-programmable electronic calculators may be used.	
1. a) Draw a labelled diagram showing atomic structure of $\binom{23}{11}Na$ .)	2mks
<ul> <li>b) The atomic number of phosphorus is 15.Draw a dot (•) and cross(x) diagram for the compound phosphorus reacts with hydrogen atomic number 1</li> <li>2. Study the following heat changes and answer questions that follow NaCl(s) → Na⁺(g) + Cl⁻(g) △ H₁ +781kJmol⁻ Na+(g) → Na(aq) △ H₂ -390kJmol⁻ Cl⁻(g) → Cl⁻(aq) △ H₃ -384kJmol⁻</li> </ul>	nd formed when (1mk)
a) Identify the heat changes H1, H2	(1mk)
<ul> <li>b) Calculate the heat of solution of sodium chloride using the above heat changes</li> <li>3. Dry carbon (II) oxide gas reacts with heated lead (II) oxide as shown in the equation below.</li> <li>PbO_(s) + CO_(g) → Pb_(s) + CO_{2(g)}</li> </ul>	(2mks)
(a) Name the process undergone by the lead (II) oxide.	(1mk)
<ul><li>(b) Give a reason for your answer in (a) above.</li><li>(c) Name another gas that can be used to perform the same function as carbon (II)oxide gas in the</li></ul>	(1mk) above reaction
	(1mk)
<ol> <li>The following reaction is in equilibrium in a closed container 2SO_{2(g)} + O_{2(g)} ⇒ 2 SO_{3 (g)} ΔH= -Ve State giving reasons how an increase in temperature would affect the amount of sulphur (VI) oxide</li> </ol>	e gas.
5. The standard electrode potential for elements <b>P</b> , <b>Q</b> , <b>R</b> and <b>S</b> are given below. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	(2mks)
$\frac{1}{2} T_2(aq) + e^- \longrightarrow T_1(aq) + 1.40$ (a) What is the E ^e value for the strongest oxidizing agent?	(1mk)
(b) Which two of the above elements in an electrochemical cell produce the largest e.m.f.	(1mk)
<ul><li>(c) Calculate the electromotive force of the cell in (b) above.</li><li>(b) above.</li><li>(c) What is meant by the term:</li></ul>	(1mk)
5. a) What is meant by the term: Half-life:-	(1mk)
b) State one application of radioactivity in medical	
<ul> <li>c) 50g of a radioactive substance was reduced to 6.25g in 36.3years. Calculate the half-life of the substance.</li> <li>7. The structure below belongs to a member of alkanoic acid. H O</li> </ul>	(2mks)
H = O $H = C = C = O = H$ $H$	
<ul> <li>a) Give the name of the Structure.</li> <li>b) What is the total number of electrons used for bonding in a molecule of the structured <i>Named in (a</i></li> <li>8. The purple color of a solution containing manganese (vii) ions disappears when iron (ii) ions are a The ionic equation for the reaction which occurs is;</li> </ul>	
$MnO^{-}_{4(aq)} + 5Fe^{2+}_{(aq)} + 8H^{+}_{(aq)} \longrightarrow Mn^{2+}_{(aq)} + 5Fe^{3+}_{(aq)} + 4H_2O_{(l)}$	
With reasons state which substance is acting as a;	(2 mks)
<ul> <li>Reducing agent.</li> <li>Oxidizing agent.</li> </ul>	

9.	3.1g of an organic compo	und containing carbon	, hydrog	gen and ox	kygen o	nly pro	duced	4.4g o	f carboı	n(iv) and 2.0 of
	water on combustion									
	Calculate its empirical for									(2mk)
	Calculate its molecular fo				1.0		0.1			(1mk)
10.	Esters, fats and polyesters	s all contain the ester li	inkage.	The struct	ural for	mula o	t the es	ster 1s	given b	elow.
		о ннн								
	H - Ċ - (	С-о-с'-с'-с'-н	I							
	rl,	О Н Н Н С-О-С-С-С-Ц- Н Н Н Н	-							
	Name <b>two</b> chemicals that	could be used to make	e this est	ter and dra	aw their	r struct	ural for	mulae		
	Show all bonds.								_	(2mks)
11.	An iron sculpture was pro									
	rusting, the village elder a							rgroui	nd out c	-
i)	Explain how the village el				of the so	culptur	e.			(1mk)
	What name is given to thi									(1mk)
	List down <b>two</b> other ways									(1mk)
12.	50cm ³ ammonia gas diffus									
	$(C_3H_8)$ to diffuse through	the same orifice under	the sam	e conditio	ons of te	emperat		-		=12.0, H = 1.0,
	N=14.0)							(3mks)		
13.	a) what observations we	ould be made if hydro	ogen sul	phide gas	s was b	ubbled	throug	gh a so	olution	· ·
	sulphate.			() 1			$\sim$			(1mk)
	b) Write an equation for		•	i (a) abov	e.	C	Q.			(1mk)
	c). Chlorine reacts with r									
		$\rightarrow$ CH ₃ Cl _(g) + HCl _(g)		1 0	•	$\mathcal{O}^{\circ}$				(1 1)
1.4		essary for this reaction			. 0		т	т.,		(1mk)
14.	The table below gives som	ne properties of three i	metals: A	Aluminiu	m, iron	and coj	pper. U	se it to	o answe	er the questions
	that follow.	<b>D</b>		<u> </u>	010		<b>T</b> 1	1	1	•.
	Metal	Density		e Strengt	n 10 ¹⁰ pa			ical co	nductiv	ity
	Aluminium	2.70	7.0	S			0.38			
	Iron	7.86	21.1	$\mathcal{O}_{\mathcal{O}}$			0.10			
	Copper	8.92	13.0				0.59			
\ \	Assuming that steel and s			▲	iron.					(1, 1)
a)	Why do some stainless ste				c					(1mk)
b)	Aluminum with a steel co		power	cables in	prefere	nce to	copper	•		(1, 1)
	Why is aluminium preferr		c.	.1	1	.1	. 1			(1mk)
c)	Apart from overhead pow		osen for	almost al	1 other	electric	al uses	•		$(2 \dots 1 \dots)$
1.5	Suggest <b>two</b> reasons for the			<b>6</b>	•	4. TT.	. 1. 4	. 1 .1	6. 11	(2mks)
13.	A form four student wante			or potassit	um mure	пе. пе	obtaine	ed the	Ionowi	ng results.
	Mass of evaporating dish		5.13g							
	Mass of evaporating dish Mass of evaporating dish		36.51g 9.41g							
	Use the information above		0	notossium	nitrota					(3mks)
16	The grid below is part of t						Collow	(Tha l	attars d	
10.	the actual symbols of elem		It to alls	swer the c	lacenon	is that I	onow.		eners u	o not represent
		nents.)								
	<u>├──</u> ┤──┐						D	c		
	NO						R	S T	TI	
	N Q							I	U	
	P									
\ \				.11. 1	1			1	1.14	$(1 \dots 1)$
· · ·	Indicate in the grid the po		-	ed by lette	er V, wl	nose ato	omic n	umber	18 14.	(1  mk)
b)	Select a letter which repre									(1  mk)
c)	Write an equation for the								1	(1mk)
17.	The table below shows an	nmeter readings record				solutio	ns wer	e teste	a separa	ately.
1	Electrolyte	77. 4 1	C	$\frac{\text{Current}(A)}{7.2}$	.)					
1	Dilute Sulphuric (V	(I) Acid		7.2						
1	Ethanoic Acid			4.0						/a • `
	Explain the difference in t	the ammeter readings.								(1mk)





## **INSTRUCTIONS TO CANDIDATES.**

- (a) Answer all the questions.
- (b) All workings must be clearly shown where necessary.
- (c) KNEC mathematical tables and non-programmable electronic calculators may be used.
- 1. The grid below shows part of the periodic table. Study it and answer the questions that follow. The letters do not represent the true symbols of the elements.

	The letters do not rep	prese	nt the	true symbols of	the elem	ents.					
		Ι	II		III IV	v	VI V	VII VIII			
			1						]		
							Α				
		Κ	В		С	D		Е			
		F	G						0		
								Н	1		
				I				- Co-	1		
(a)							6	Ś,			
	Which element form			-	xplain yc	our ansv	ver.	2			(2mks)
· · ·	Which element is the				101		S	•			(1mk)
	Name the chemical f				and G be	long.	<				(1  mk)
	What is the nature of			-	(FOF	2					(1mk)
(f)	How does the reactiv	-		-		plain.					(2mks)
	Write a balanced equ					•					(1mk)
	Explain how the ator					1 4	66	11 .1 .		1 1	(2mks)
(1)	If the oxides of B an	a D a	are se	parately dissolve	a in wate	er, what	effec	ts will thei	r aqueous s	olutions n	
	paper?			.01							(2mks)
2.	(a) (i) State what is	maa	nt by	"dynamic equili	brium"						(1mk)
2.			-	are orange in colo		chrom	ate (V	T) ions are	vellow		
		· ·		equilibrium.	Jui winne		110 ( <b>v</b>	1) 10115 arc	yenow.		
				$\rightarrow$ 2Cr $0_{4(0)}^{2-}$	- + 21	LOw					
					.,		1.1.			4 . 41	<b>1</b>
	State and ex	plain	the o	bservations that	will be m	lade 11 s	uipnu	ric (VI) ac	id is added	to the mix	
	(b) One of the report	iona	in tha	manufacture of 1	Nitria(N)	a aid in	volvo	a antolytia	avidation	fammani	(2mks)
	(b) One of the reaction.		in the				voive	s catalytic	oxidation o		a as shown in
	$4NH_{3(g)} + 50_{2(g)}$	$\overline{\nabla}$	<u> </u>	$4NO_{(g)} + 6H_2O_{(g)}$		- 001/11	nol ⁻¹				
			dout	at a pressure of 1		•		omporatur	$a \circ f 0 0 0^0 C$		
	i) Other than Nitric			*	-			emperatur	C 01 900 C.		(1mk)
	ii) State and explain			-				eaction is c	arried out.		(TIIK)
	(I) at 10 atmosphere			*	or equine	Jiiuni II	the r		united out,		(2mks)
	(I) at $900^{\circ}$ C and 20	-									(2mks) (2mks)
	(III) In the absence		-	-							(1mk)
	(c) State and explain		-		e reactior	n if the r	eactio	on is carrie	d out at 10		()
	atmospheres and								-		(2mks)
	(d) A factory uses 1			nmonia each dav	to produ	ce 160k	gofi	nitrogen (II	) oxide.		、 ,
	• •	-		ield of nitrogen (I	-		-	U (	<i>,</i>		(3mks)
	1			e (	<i>.</i>						, /





(1) Name the substance in flask B.	(1mk)
(iii) State the observation made in the combustion tube.	(1mk)
(iv) Write an equation for the reaction in the combustion tube.	(1mk)
(b) (i) Identify the gas that burns at the jet.	(1mk)
(ii) Explain why the gas in b (i) is burned.	(1mk)
(c) Give reasons why excess hydrogen chloride gas is dissolved using the funnel arrangement.	(1mk)
(d) State what will be observed when the reaction in the combustion tube is complete.	(1mk)



## **CONFIDENTIAL**

## In addition to the apparatus and fittings found in a chemistry laboratory, each candidate will require the following:

- 1. About 100cm³ of 0.2m hydrochloric acid labelled solution S
- 2. Accurately weighed 2.4g of anhydrous sodium carbonate.
- 3. 250ml volumetric flask
- 4. 50ml measuring cylinder
- 5. Distilled water
- 6. 250ml empty beaker
- 7. Glass rod
- 8. About 50cm3 of 0.5m sulphuric (VI) acid labelled solution G
- reekcsepastoaners.com 9. About 70cm3 of 1m sodium hydroxide solution labelled solution F
- 10. 10ml measuring cylinder
- 11. 100ml empty beaker
- 12. 0-110°C thermometer
- 13. One burette 0-50ml
- 14. one 25.0ml pipette
- 15. one pipette filler
- 16. retort stand
- 17. 2 labels
- 18. two conical flasks (250ml)
- 19. one boiling tube
- 20. six dry test tubes in a test tube rack
- 21. Methyl orange indicator
- 22. One filter funnel
- 23. a white tile
- 24. Metallic spatula
- 25. 1.5 g of solid C
- 26. 1g of solid P
- 27. About 0.5g anhydrous sodium carbonate.

#### Access to

- i) Means of heating
- ii) 2m NaoH solution with a dropper
- iii) 2m ammonia solution with a dropper
- iv) 0.5m sodium chloride solution with a dropper
- v) 1m sulphuric (VI) acid with a dropper

## NOTE

- 1. Solid C is lead (ii) nitrate
- 2. Solid P is oxalic acid
- 3. solution F is sodium hydroxide solution prepared by dissolving 40g of it in 1 litre of solution
- 4. Solution S is 0.2m Hydrochloric acid prepared by dissolving 17.2cm³ of concentrated hydrochloric acid in 1 litre.
- 5. Solution G is 0.5m sulphuric (vi) acid prepared by dissolving 27.5cm³ of concentrated sulphuric (vi) acid in 1 litre of solution (Density  $1.84g/cm^3$ )
- 6. 0.5m sodium chloride solution is prepared by dissolving 29.25g of solid sodium chloride in 1 litre of solution

## **INSTRUCTIONS TO CANDITATES**

#### *a)* Answer all the questions

- b) You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hrs allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- c) All working must be clearly shown where necessary.
- 1. You are provided with
  - Solution S 0.2m Hydrochloric acid solution
  - N grams of anhydrous sodium carbonate
  - Methyl orange indicator

You are required to prepare a solution of sodium carbonate and then standardize it with hydrochloric acid solution. **Procedure** 

Transfer all the N grams of sodium Carbonate into a 250ml volumetric flask Add 100cm³ of distilled water and shake till all the solid dissolves. Add more distilled water up to the 250ml mark and label it solution P using a measuring cylinder, transfer 50cm³ of solution P into a clean 250ml beaker and add 50cm³ of distilled water. Stir well with a glass rod and label it solution T. Pipette 25.0cm³ of solution T and place it into a conical flask, add 3 drops of methyl orange indicator and titrate with solution S from the burette. Record your results in the table I below. Repeat the titration two more times and complete the table below. (3mks)

	I	III
Final burette reading (cm ³ )		
Initial burette reading (cm ³ )	Co.	
Volume of S used (cm ³ )		

a)	Calculate the average volume of solution S used	(1mk)
b)	i) Calculate the number of moles of solution S used.	(2mks)
	ii) Write a balanced chemical equation for the reaction between solution T and S	(1mk)
	iii) Calculate the number of moles of sodium carbonate solution in 25cm ³ of solution T.	(2mks)
	iv) Calculate the number of moles of sodium carbonate in 100cm ³ of solution T	(2mks)
	v) Calculate the number of moles of sodium carbonate in 50cm ³ of the original solution P	(1mk)
c)	Given that Na =23.0, C= $12.0$ , O = $16.0$ Calculate	
i.	The mass of sodium carbonate N grams that were dissolved to make solution P	(2mks)
ii.	The concentration of sodium carbonate solution P in moles per litre	(2mks)

2. You are provided with 1M sodium hydroxide solution F. 0.5m Solution of an acid solution G.

You are required to determine the molar heat of neutralization of sodium hydroxide with acid G.

#### Procedure

Place six test tubes on the test tube rack. Using 10cm³ measuring cylinder measure 5cm³ portions of solution G and place them into each of the six test tubes. Measure 25cm³ of solution F using a 50cm₃ measuring cylinder and place it into a 100cm³ beaker. Measure the temperature of this solution F and record it in table II below. Pour the first portion of the 5cm³ of solution G from the test-tube into the beaker containing 25cm³ of solution F. Stir with the thermometer and record the highest temperature of the mixture pour the second portion of solution G, stir carefully and record the highest temperature of this mixture. Continue with this procedure using the remaining portions of solution G to complete table II below

Т	ABLE II								
a)									(3mks)
	Total volume of G added (cm ³ )	0 5	5	10	15	20	25	30	
	Volume of F (cm ³ )	25 2	25	25	25	25	25	25	
	Highest temperature (0°c)								
b) O	on the grid provided, plot a graph of	f temperature	e (vert	tical axis) a	igainst vol	lume of s	olution G	added	(3mks)
c) F	rom the graph determine								
. Т	he volume of solution G required to	o neutralize	the 25	icm ³ of sod	ium hydro	oxide solu	ution F		(1mk)
ii. T	The highest temperature change, $\Delta T$	Γ.							(1mk)
d) C	alculate the number of moles of so	dium hydrox	kide so	olution F us	sed				(1mks)
e) C	alculate the molar heat of neutraliz	ation of the	sodiur	n hydroxid	le solution	nF.			
(s	specific heat capacity of water $= 4.2$	2Jg ⁻¹ k ⁻¹ , den	sity of	f water $= 1$	$g/cm^3$ )				(2mks)
(I) y	ou are provided with solid C carry of	out the tests	below	to identify	the ions	present in	n substan	ce C.	
	TEST			OBSERV	ATIONS	5 INI	FERENC	CES	
	a) dissolve one spatula end full of	f solid C in a	bout		/				$\sim$
	10cm ³ of distilled water div	vide the solu	ution		$\sim$			$>\!\!\!<$	
	into 4 portions					<u> </u>			
	i) To the first portion add 3 d	lrops of aqu	eous						
	NaoH and then to excess			(1mk)		(lr	nk)		
	ii) To the second portion add 3 da	rops of amm	nonia			9			
	solution and then to excess			(1mk)	~	<b>)</b> (1r	nk)		
	iii) To the third portion add 4	drops of soc	dium		Š.				
	chloride solution and warm			(2mk)	$\mathcal{X}$	(1r	nk)		
	iv) To the fourth portion add 3 da	rops of sulpl	nuric	Ĵ.	0.1				
	(VI) acid			(1 <b>mk</b> )		(1r	nk)		
				3					
(II) Y	ou are provided with solid p carry	out the tests	below	to identify	y the solid	l			
	TEST		S	OBSERV	<b>ATIONS</b>	5 INI	FERENC	ES	
	a) Scoop a little of solid P using		tallic						
	spatula and ignite it with a fla	ame		(1mk)		(1m	ık)		
	b) Place the remaining solid P in								
	2cm ³ of distilled water.	dd all the	solid	(1mk)		(1m	ık)		
	and in mark and a married	•							

sodium carbonate provided









### **Instructions to candidates**

- *1.* Answer all the questions.
- 2. Mathematical tables and scientific calculators may be used.
- 3. All working must be clearly shown where necessary.

1. The diagram shows part of the Periodic Table. The letters are not the actual symbols of the elements.



3. Next to each letter, A to F, in the table below is the molecular formula of an organic compound.

Α	$C_2H_5Br$	в	$C_2H_4$
с	C ₄ H ₁₀	D	C ₂ H ₆ O
Е	C ₃ H ₆ O	F	C ₃ H ₆ O ₂

(a) Choose a molecular formula above that represents an organic compound below.

- Write down only the letter (A to F) next to the question numbers
- (i) A haloalkane
- (ii) An alcohol
- (iii) An unsaturated hydrocarbon
- (iv) A product of thermal cracking of compound C.
- (b) If compound F is a carboxylic acid, write down the following:
  - (i) The structural formula of a functional isomer (an isomer with a different functional group) of F. (1mk)(ii) The IUPAC name of a functional isomer of F. (1mk)

 $(\frac{1}{2}mk)$ 

 $(\frac{1}{2} \text{ mark})$ 

 $(\frac{1}{2} \text{ mark})$ 

 $(\frac{1}{2} \text{ mark})$ 

(1mk)

(1mk)

(1mk)

(1mk)

- (c) Compound B is a monomer used to make a polymer. Write down the:
  - (i) Definition of a polymer.
  - (ii) IUPAC name of the polymer.
  - (iii) Balanced equation for the polymerisation reaction
- (d) Compound A is used as a reactant in the production of compound D.
  - (i) Name the type of reaction that takes place.
  - (ii) State two changes that can be made to the reaction conditions in (1) to obtain compound B, instead of D, as product. (2mks)
- 4. The flow chart below summarizes the extraction of Zinc, study it and answer the questions that follow.



(a)	Name the process represented by A and B	(2mks)
(b)	Identify the reagents required for process B, C and D	(3mks)
(c)	Write a chemical equation of the reaction that occurs in process B	(1mk)
(d)	With an aid of a diagram, explain how you would obtain a pure sample of Zinc by process E.	(2mks)
(e)	State two uses of Zinc metal	(2mks)

5. (a) The table below gives some values of standard enthalpies of formation ( $\Delta H_f^{\Theta}$ ).

Substance	F _{2(g)}	CF _{4(g)}	HF _(g)
$\Delta H_{f}^{\Theta}$ (kJmole ⁻¹ )	0	- 680	- 269

The enthalpy changes for the reaction  $C_2H_{6(g)} + 7F_{2(g)} \rightarrow 2CF_{4(g)} + 6HF_{(g)}$  is -2889 kJ mol⁻¹. Use this value and the standard enthalpies of formation in **Table 2** to calculate the standard enthalpy of formation of  $C_2H_{6(g)}$ . (3mks)

- (b) In an experiment to determine the enthalpy of solution of concentrated sulphuric (VI) acid (Specific gravity = 1.84gcm⁻³) the following procedure was used:
  - A clean 250.0 cm³ glass or plastic beaker is wrapped with a newspaper leaf.
  - About 50.0 cm³ of tap water is measured into the beaker and the steady temperature noted.
  - The beaker is held in a tilted position and 2.0 cm³ of and sulphuric acid added into the water

		/hy was the beaker wrapp				(1mk)
	· · ·	/hy was the acid added in				(1mk)
		xplain the reason for tilting				(2mks)
					(VI) acid given that $\Delta T$ for	
	Δ	$T = 1^{\circ}C.$ (Density of wate	$er = 1gcm^{-3}$ ; specific hea	it capacity of wa	$ter = 4.2 \text{ kJkg}^{-1} \text{K}^{-1}$	(4mks)
6.	P	$t_{(s)}   Fe^{2+}_{(aq)}, Fe^{3+}_{(aq)}    X^{+}_{(aq)}$	aq)   X _(s)		elow, where X is an unkn	own metal:
	<pre></pre>	The cell potential of this c				(1mlr)
		/rite down the type of ele /hat does the single line (				(1mk)
	· ·	Vrite down the half-reacti		*	ove cell	(1mk) (1mk)
		vince down the nan-react	on that takes place at th			(TIIK)
	(11) 0	Half reaction	$E^{\Theta}$ (volts)			
		$Fe^{3+}_{(aq)} + e \rightarrow Fe^{2+}_{(aq)}$	+0.77			
			+0.80			
		$\frac{Ag^{+}_{(aq)} + e \rightarrow Ag_{(s)}}{Na^{+}_{(aq)} + e \rightarrow Na_{(s)}}$	-2.87			
		$\frac{\mathrm{IVa}_{(\mathrm{aq})} + \mathrm{C} \longrightarrow \mathrm{IVa}_{(\mathrm{s})}}{\mathrm{K}^{+}_{(\mathrm{aq})} + \mathrm{e} \longrightarrow \mathrm{K}_{(\mathrm{s})}}$	-2.92			
		$\mathbf{K}$ (aq) $+ \mathbf{c} \rightarrow \mathbf{K}$ (s)	- 2.92			
	Id	lentify X with the aid of a	calculation		$\mathbf{A}$	(2mks)
	IG	centrity 72 with the and of t				(2111K5)
	(i) Id	Gas G		e used to electrol	St 2	
	I. H					(1mk)
	II. G					(1mk)
	(ii) W	/hat happens to the conce	ntration of the Sulphuri	c acid during the	process with time? Expla	· · ·
					e electrolyte for 15 minu	
-		olume of gas H produced	(1  Faraday = 96,500 C,	molar gas volun	$he = 24 \text{ dm}^3 \text{ at r.t.p}$ ).	(3 mks)
7.		) What is a salt?				(1  mk)
		i) Write the formula of an atudent has found that h	-	nitroto is contam	insted with small smarre	(1mk)
		he picks out a small piece			inated with small amount	is of a greeff solid
			6		from the impure mixture.	(3mks)
					Describe a series of 3 tes	· /
		ould use to confirm this.	<b>~</b> 11	~ /		(6 marks)
		Test Procedure	Observation	ns C	onclusion	
		Test Trocedure	Obsci vation			
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		1				
	· · ·	1       2       3       an experiment 50g of a state	saturated solution of a s	alt X was heated	to dryness in an evaporat	•

### CONFIDENTIAL

#### **Requirements for candidates**

In addition to the apparatus and fittings found in a Chemistry laboratory, each candidate will require the following. about 100cm³ of solution F 1.

- 2. about 50cm³ of solution G
- 30cm³ of solution M 3.
- 30cm³ of solution N 4.
- 5. one burette 0 50ml
- 6. one pipette 25ml
- 7. two conical flasks
- 8. 100ml measuring cylinder
- 9. 200ml or 250ml beaker
- 10. About 500ml distilled water
- 11. Phenolphthalein indicator
- 12. thermometer ( $0 110^{\circ}$ C)
- csepastpapers.com 13. Source of strong heat (preferably Bunsen burner)
- 14. clock or stop watch
- 15. 2 boiling tubes
- 16. one CLEAN METALLIC spatula
- 17. 6 clean dry test-tubes
- 18. one test-tube holder
- 19. at least 6cm length of universal indicator paper
- 20. 0.5g of sodium hydrogen carbonate
- 21. pH chart pH 1 14
- 22. Bromine water supplied with a dropper
- 23. 0.5g of solid K oxalic acid.
- 24. 0.5g of solid P Sodium sulphite

# The students should have access to the following

- 2.0M NaOH solution with a dropper a.
- b. 1.0M barium nitrate solution with a dropper
- Bromine water with a dropper C.
- Acidified potassium manganate (vii) with a dropper d.
- e. 2.0M HCl with a dropper
- Bromine water is prepared by adding 1ml of liquid bromine to 100cm³ of distilled water and shaking thoroughly in 1. a fume cupboard.
- 2. Acidified potassium permanganate is prepared by adding 3.16g of solid potassium permanganate to 400cm³ of 2M sulphuric acid and diluting to one litre of solution using distilled water.
- Solution M is made by dissolving 12.6g of oxalic acid in 400cm³ distilled water and making it to 1 litre. 3.
- Solution N is prepared by dissolving 3.16g of potassium manganate (VII) in 200cm³ of 2M sulphuric acid and 4 adding more water to make 1 litre
- Solution F is prepared by dissolving 4g of sodium hydroxide pellets in about 800cm³ of distilled water and diluting 5. it to one litre solution.
- Solution G is prepared by dissolving 9.0g of oxalic acid (ethan-1,2-dioic acid) in 200cm³ of distilled water and 6. diluting it to 250cm³ solution.

#### **INSTRUCTIONS TO CANDIDATES**

#### *1.* Answer all the questions.

- 2. All working must be clearly shown where necessary.
- 3. You are not allowed to start working with the apparatus for the first 15 minutes. This time is to enable you read the question paper and make sure you have all the requirements.
- 1. You are provided with:
  - 0.1M sodium hydroxide solution F
  - Solution G made by dissolving 9.0g of dibasic acid  $H_2MO_4$  in 250cm³ of distilled water
  - You are required to:
- (i) Standardize the diluted solution H using the sodium hydroxide solution F
- (ii) Determine the mass of M in the formula H₂MO₄

#### **Procedure 1**

Using a measuring cylinder measure  $20\text{cm}^3$  of solution G and transfer it into a beaker. Measure  $80\text{cm}^3$  of distilled water and add it to the  $20\text{cm}^3$  of solution G in the beaker. Label this as solution H. Place solution H in a burette. Pipette  $25\text{cm}^3$  of solution F into  $250\text{cm}^3$  conical flask. Add 2-3 drops of phenolphthalein indicator and Titrate with solution H. Record your results in table 1. Repeat the titration two more times and complete the table.

a) Table 1

a)				_		
	1 I	I	1II			
	Final burette reading (cm ³ )	×Oř				
	Initial burette reading (cm ³ )	c				
	Volume of solution H used ( $cm^3$ )					
						(4mks)
b)	Calculate the average volume of solution H used					(1mk)
c)	Determine the number of moles of:-					
	i) Sodium hydroxide in Solution F in 25cm ³ .					(1mk)
	ii) Acid in solution H in the average volume used.					(1mk)
	iii) Acid in 100cm ³ of solution H.					(1mk)
	iv) Acid in 20cm ³ of solution G.					(1mk)
	v) Acid in $250 \text{ cm}^3$ of solution Q.					(2mks)
d)	Calculate the:					
	i) Molar mass of acid H ₂ MO ₄ .					(2mks)
	ii) Mass of M in the formula $H_2MO_4$ given that $H = 1$ , $O =$	=16.				(1mk)
2.	You are provided with:					
2.	- 0.15M ethan-1,2-dioc acid (oxalic), solution M					
	<ul> <li>0.02M acidified potassium manganate (VII) solution N</li> </ul>	J				
	You are required to:	•				
*	Determine the rate of reaction between acidified potassium	n manganat	e (VII) and	1 ethan – 1.	2 - dioc (o	(xalic) acid at
•	different temperatures.		( · 11) •		()	
	Procedure					
	Place 5cm ³ of solution N in a boiling tube. Place another 5	cm ³ of solu	ution M in	another boi	iling tube.	
	Heat solution N on a Bunsen burner flame to 80°C. Allow					olution N and
	at the same time start the stop watch. Stir the mixture an					
	disappear. At the same time record the temperature. Using					
	solution N to cool to 60°, 50°C and 45°C in each case to co					C
a)	Table II	-				_
	Temperature before mixing °C	70	60	50	45	
	Temperature at which purple colour disappear ⁰ C					

70	60	50	45	
	70	70         60	70         60         50	70         60         50         45

b)		the grid of graph paper provided plot $^{1/_{time}}$ (y-axis) ag	gainst temperature at which the purple colour disappe (3mks)	ears.
c) i)	Det	m your graph; ermine the time taken for purple colour to disappear a		
ii)	Stat	te the relationship between rate of reaction and the terr	perature at which purple colour disappears. (1mk)	
3.		You are provided with substance $P$ for this question. Add about 10cm ³ of distilled water and stir. Pour the		1.
		<b>Observations</b>	Inferences	
		(1mk)	(1mk)	
	i)	To the <i>first</i> portion of the solution, <i>add</i> sodium hydro		
		Observations	Inferences	
	••	(1mk)	(1mk)	
	ii)	<b>Dip</b> a clean stirring rod/glass rod/nichrome wire into t bunsen flame.	the second portion and then <i>place</i> into the side of a bl	ue
		Observations	Inferences	
			Injerences	
		(½mk)	(1mk)	
	iii)	To the <i>third</i> portion, <i>add</i> 2-3 drops of barium nitrate s	solution <i>followed by excess</i> hydrochloric acid.	
		Observations	Inferences C	
		(1mk)	(½mk)	
	iv)	To the <i>fourth</i> portion, <i>add</i> 2-3 drops of acidified pota	ssium manganate (VII)	
		Observations	Inferences	
		(½mk)	(1/2mk)	
	b)	You are provided with solid K. Carry out the tests be	w. Write your observations and inferences in the sp	aces
		provided.	w. write your observations and interences in the sp	aces
	i)	Using a clean metallic spatula, heat about one third o	f solid K in a Bunsen burner flame.	
		Observations	Inferences	
		(1mk)	(1mk)	
	ii)	Dissolve the remaining portion of solid K into about	10 cm ³ of distilled water and divide the solution in	to 4
		portions.	i foom of distinct which and divide the solution in	
		To the first portion, add two drops of acidified potassi	ium permanganate solution.	
		Observations	Inferences	
		(1mk)	(1mk)	
	iii)	To the second portion, add two drops of bromine wate		
	)	<b>Observations</b>	Inferences	
		(1mk)	(1mk)	
	iv)	Determine the pH of the third portion using universal		
	10)	<b>Observations</b>	Inferences	
	<b>1</b> 7)	(½mk) To the fourth portion, add a small amount of solid soc	(½mk)	
	vj	Observations	Inferences	
		(1mk)	(1mk)	

#### **IMENTI SOUTH EXAMINATIONS. 2023** Kenya Certificate of Secondary Education 233/1CHEMISTRY PAPER 1 TIME: 2HRS Describe the observable characteristics of a luminous flame. (2 marks) 1 Study the table below to answer the questions that follow. 2. С Solution В D А 2.2 7.2 pH value 13.5 6.5 i) Which solution is likely to be? a) Potassium hydroxide (1 mark) b) Acid rain (1 mark)ii) Substance E reacted with both solution A and B. What is the nature of substance E? (1 mark) Air was passed through several reagents as shown below. 3. Air Conc. NaOH Excess heated Excess heated copper turnings magnesium powder Escaping gases Name one gas which escapes from the chamber containing magnesium powder. i) Give a reason for your answer. (2 marks) Write an equation for the reaction which takes place in the chamber containing magnesium powder. (1 mark)ii) a) A fixed mass of a gas occupies 200cm³ at a temperature of 23°C and pressure of 780mmHg. 4. Calculate volume of the gas at -25°C and 740mmHg (2 marks) b) What is the relationship between the rate of diffusion of a gas and its molecular mass? (1 mark)An atom of element Q has a mass number 39 and 19 protons. 5. Write the electronic arrangement of its ion. (1 mark) a) State whether the element is a metal or non-metal. (1 mark)b) State the period and group to which element Q belongs. (1 mark)c) The table below shows properties of metal chloride X and Y. 6. Melting points (°C) Chloride Electrical conductivity 203 Poor Х 1070 Good State the type of bond present in: a) i) (1 mark)Х ii) Y (1 mark) In terms of structure and bonding, explain why Y conducts electricity while X does not. (1 mark) b) 7. 15g of zinc carbonate were strongly heated to a constant mass. Calculate mass of the solid residue formed. (Zn = 65, C = 12, O = 16)(3 marks) Starting with copper metal describe how a sample of copper (II) sulphate can be prepared. (3 marks) 8. 9. The flow chart shows the process that occurs in the manufacture of nitric (V) acid. Ammonia Air Name substances (1 mark) i) J L (1 mark)ii) M Air _ (1 mark)- M iii) L Nitric (V) acid





#### IMENTI SOUTH EXAMINATIONS, 2023 Kenya Certificate of Secondary Education 233/2 CHEMISTRY Paper 2 (Theory) TIME: 2 HOURS

# **INSTRUCTIONS:**

- Answer ALL the questions.
- Electronic calculators may be used.
- All working must be clearly shown where necessary.
- 1. The grid below shows part of the periodic table. Study it and answer the questions that follow. (The letters does not represent the actual symbol of the elements)



d) A beaker containing concentrated hydrochloric acid was brought near a gas jar ammonia solution.	containing concentrate
<ul><li>i) What observation was made?</li></ul>	(1 mark)
i) Write the equation for the reaction.	(1  mark) (1  mark)
e) State <b>two</b> uses of ammonia gas.	(2 marks)
3. The following is the procedure that was used to obtain the solubility of salt R in water at 2	25°C Study it and answ
the questions that follows.	
Salt R was dissolved in water until no more could dissolve. The mixture was then coole settle. A dry evaporating dish and dry watch glass were weighed. Some of the solution w	
covered with the watch glass and then weighed.	
The solution was evaporated to dryness over a small flame. The residue, the dish and the w	vatch glass were weighed
The residue was heated repeatedly until a constant mass was obtained.	
The below results were obtained:	
Mass of dish + watch glass = $50.60$ g	
Mass of solution $+$ dish $+$ watch glass $= 80.60$ g	
Mass of residue + dish + watch glass = $62.60$ g	
) Use the data to answer the questions that follows.	
What is the purpose of the watch glass in such an experiment?	(1 mark)
) Why would the heating be continued until a constant mass was obtained?	(1 mark)
i) Calculate the mass of the solution.	(1 mark)
7) Calculate the mass of the residue.	(1 mark)
<ul> <li>What is the purpose of the watch glass in such an experiment?</li> <li>Why would the heating be continued until a constant mass was obtained?</li> <li>Calculate the mass of the solution.</li> <li>Calculate the mass of the residue.</li> <li>Calculate the mass of water.</li> </ul>	(1 mark)
) Calculate the solubility of salt R in g per 100g of water at 25°C.	(2 marks)
Hard water has both advantages and disadvantages. Give one advantage and one disadvar	· · · · · · · · · · · · · · · · · · ·
Advantage	(1 mark)
) Disadvantage	(1 mark)
) Using an equation, explain how addition of sodium carbonate is used to remove water har	· /
. a) Two reagents that can be used to prepare chlorine gas are manganese (IV)	oxide and concentrate
hydrochloric acid.	(1  1)
i) Write an equation for the reaction.	(1 mark)
ii) Give the formula of another reagent that can be reacted with concentrated hydrochle	-
gas.	(1  mark)
<ul><li>iii) Describe how chlorine could be dried in the laboratory.</li><li>c) In another experiments dry chlorine gas was reacted with aluminium as shown.</li></ul>	(1 mark)
Aluminium	
Guarditab	
Drychlorine gas → ↑↑ Heat	
) Name substance A.	(1 mark)
<ul><li>i) Write an equation for the reaction that took place in the combustion tube.</li><li>ii) 0.84g of aluminium reacted completely with chlorine gas. Calculate the volume of chlorin</li></ul>	(1 mark)
(Al = 27.0, Cl 35.5)	(3 marks)
$(n_1 - 2_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1 . 0, 0_1$	(3 marks)

(3 marks) (1 mark)

iv) Name **one** substance that can be put in the guard tube.



After development A, B and C were found to have more 8cm, 3cm and 6cm respectively. D has separated into two spots which moved 6cm and 8cm³.

- i) On the diagram
- I. Label baseline.

(1 mark)



8. Study the flow chart given below and then answer the question that follows.



# CONFIDENTIAL

# **INSTRUCTION TO SCHOOLS**

In addition to the apparatus and fittings found in a chemistry laboratory, each candidate will require the following:

- 4.0g of solid A accurately measured and put in a stoppered boiling tube
- About 80cm³ of solution B
- 10cm³ of solution C
- Solid D about 0.5g
- 1 thermometer
- One burette
- One pipette
- 250ml volumetric flask
- -

### ACCESS TO:

- Phenolphthalein indicator
- Potassium iodide solution
- 2.0M ammonium solution
- 2.0M sodium hydroxide solution
- 0.1M Lead (II) nitrate solution

### PREPARATION

- 1. Solid A is 4.0g oxalic acid (COOH)₂  $2H_2O$  accurately measured and placed in a stoppered boiling tube
- 2. Solution B is 0.25M NaOH prepared by dissolving 10g NaOH pellets in 600cm³ of water and topping up to 100cm³ solution with distilled water
- 3. Solution C is prepared by dissolving a mixture of aluminium nitrate and sodium sulphite (NaSO₃) i.e 10g aluminum nitrate and 10g sodium sulphate in 600cm³ of distilled water and topping up to 1000cm³ solution with distilled water
- 4. Solid D is maleic acid  $\sqrt{}$
- 5. Potassium iodide is prepared by dissolving 21.4g of solid K in 1000cm³ of solution (Prepare the quantity you require)
- 6. 2M ammonia solution is prepared by dissolving 123cm³ of ammonia in 1000cm³ of ammonium hydroxide solution
- 7. 2M NaOH is prepared by dissolving 80g of HaOH pellets in 1000cm³ of solution
- 8. Lead (II) nitrate solution is prepared by dissolving 33.1g of Lead (II) nitrate in 1000cm³ of solution (Prepare the quantity you require)
- 9. Barium nitrate solution is prepared by dissolving 26.1g of solid barium nitrate in 1000cm³ of solution (prepare the quantity you require)
- 10. Nitric (V) acid is prepared by dissolving 145cm³ of concentrated nitric (V) acid in 1000cm³ of solution (prepare the quantity you require)
- 11. KMnO₄ is prepared by dissolving 3.2g KMnO₄ in 400cm³ of 2.0M sulphuric (VI) acid and topping up to 1000cm³ of solution using distilled water
- 12. Bromine water of prepared by dissolving 1cm³ of bromine water is a fumed chamber.

- A complete retort stand
- 2 conical flask
- A test tube holder
- One boiling tube
- Six clean test tubes
- 10ml measuring cylinder
- 0.5g sodium hydrogen carbonate
- 500ml of distilled water in a wash bottle

0.1M barium nitrate solution

- 2.0M Nitric (V) acid
- Acidified potassium manganese (VII) solution (KMnO₄)
- Bromine water

### IMENTI SOUTH EXAMINATIONS, 2023 Kenya Certificate of Secondary Education 233/3 CHEMISTRY PAPER 3 (PRACTICAL) TIME: 2¹ HOURS

# **INSTRUCTIONS**

- Read the procedure carefully, perform the experiments and answer the questions.
- The first 15minutes of the  $2\frac{1}{4}$  hours allowed for this paper are meant for reading through the paper to confirm that all the apparatus and reagents are provided.
- Mathematical tables and electronic calculators may be used.
- All working **must be** clearly shown where necessary.

#### Question 1

- You are provided with,
- Solid A 4.0g (COOH)₂ XH₂O
- Solution B 0.25M NaoH

You are supposed to

- i) Determine the solubility of A at different temperatures.
- ii) Determine the amount of water of crystallization X in solid A.

#### **Procedure A**

- Into the boiling tube containing solid A, add 4cm³ of distilled water. Using a 10ml measuring cylinder.
- Stir with the thermometer while heating the mixture until all the solid dissolves.
- Withdraw from heat and allow the mixture to cool while stirring (you may use a water bath).
- Record the temperature at which crystals 1st appear in the table I below.
- Add 2cm³ more of distilled water to make a total of **6**cm³ and repeat the above procedure.
- Repeat the above procedure two (2) more times and complete table I below. <u>RETAIN</u> the content of boiling tube for procedure B.

ars.com

#### Table 1

Volume of water added	4	6	8	10
Solubility (g / 100g of water)				
Temperature at which crystals appear				

- i) Plot a graph of solubility of A against temperature.
- ii) From your graph determine the solubility of A at 60°C.

#### **Procedure B**

Transfer the content of the boiling tube into a 250ml volumetric flask.

Add distilled water upto the mark.

Label the resulting solution, solution A. Fill a burette with solution A.

Fill a burette with solution A.

Transfer 25ml of solution B into a 250ml conical flask using a pipette.

Add phenolphthalein indicator.

Titrate A against B until the pink colour disappears.

Record your results in the table two (2) below.

Repeat the procedure two (2) more times and complete table two (2).

#### Table 2

	Ι	II	III
Final burette reading			
Initial burette reading			
Volume of solution A used			

i) Determine the average volume of solution A used.

(6 marks)

(3 marks)

(1 mark)

	-
ii) How many moles of NaOH solution B were used?	(1 mark)
iii) If two moles of NaOH react with 1 mole of A, How r	•
iv) Determine the molarity of solution A.	(2 marks)
v) Calculate the molar mass of A.	(1 mark)
vi) Determine the value of x in $(COOH)_2$ XH ₂ O $(C = 12,$	O = 16, H = 1). (1 mark)
spaces provided.	outlined below. Write your observations and inferences in the
Divide the solution into five (5) portion each $2 \text{ cm}^3$ .	
a) To the 1 st portion add potassium iodide solution.	
Observations	Inferences
(1 ma	(1 mark)
b) To the 2 nd portion add ammonia solution dropwise un	
Observations	Inferences
(1 ma	k) (1 mark)
c) To the 3 rd portion add Sodium hydroxide solution dro	owise until in excess
Observations	Inferences
(1 ma	(1 mark)
d) To the 4 th portion add Lead nitrate solution.	
Observations	Inferences
(1 ma	(2marks)
e) To the last portion add Barium nitrate solution follow	ed by dilute nitric nitric (V) acid
Observations	Inferences
(2 mar	(1 mark)
Question 3 You are provided with solid D, use it to carry the tests ou	
a) Add 6cm ³ of distilled water to solid <b>D</b> in a test tube, s	
Observations	Inferences
(½ ma	·k) (½ mark)
b) Divide the resulting solution into 3 portions.	
To the 1 st portion add solid sodium hydrogen carbonate.	
Observations	Inferences
(1	1) (1 1)
(1 ma	k) (1 mark)
c) To the 2 nd portion add acidified potassium manganite	(vii) solution (KMno4) and warm.
Observations	Inferences
(1 ma	(1 mark)
d) To the last portion add bromine water.	
Observations	Inferences
(1 ma	(1 mark)

# <u>CEKENAS PREMOCK EXAMINATION, 2023</u> <u>Kenya Certificate of Secondary Education</u> 233/1 <u>CHEMISTRY</u> <u>Paper 1</u> (Theory) TIME: 2 HOURS

# **INSTRUCTIONS TO CANDIDATES**

- 1. All working must be clearly shown where necessary.
- 2. Mathematical tables and silent electronic calculations may be used
- 1. The following is chromatography of certain food coloring's A, B, C, D and E. Study and answer the questions that follow.





c) State one application of a complex ion.

(1mk)



- (i) A saturated solution of the salt at  $40^{\circ}$  c was heated at  $100^{\circ}$  c. State and explain the observation made. (1mk)
- (ii) Calculate the mass of salt formed when a saturated solution of the salt at  $0^{\circ}$ c is heated to  $100^{\circ}$ c. (1mk)
- 15. The figure below shows the apparatus used by students to study the electrolysis of molten lead (II) iodide.



a) In the diagram label the anode.(1mk)b) When the switch was on, the bulb did not light. Explain.(1mk)c) State and explain the observation made at the anode.(1mk)







### **CEKENAS PREMOCK EXAMINATION, 2023** Kenya Certificate of Secondary Education 233/2**CHEMISTRY** PAPER 2 TIME: 2 HOURS

# **INSTRUCTION TO THE CANDIDATES**

All working must be clearly shown where necessary. 1.

- Mathematical tables and silent electronic calculations may be used 2.
- The grid below shows part of the periodic table. Study it and answer the questions that follow. 1. a) (Letters do not represent the actual symbols)

E		_					
					S		
	Р		U	V		М	
Х	Y						
						N	

(1mark)

(2marks (2marks)

(1mark)

(2marks)

(2marks)

(2marks)

- Select an element which forms an ion with a charge of -3 i)
- ii) Name the type of structure that the chloride of Y would have. Explain
- iii) How does the reactivity of M compare with that of N. Explain
- iv) 1.3g of P completely burns in chlorine and consumes 1.2 litres of the gas.
- I) Write an equation for the reaction between element P and chlorine
- II) Determine the relative atomic mass of P (molar gas volume= 24litres)
- b) State and explain how you would expect the following to compare
- Atomic radii of E and X i)
- pH values of aqueous oxides of Y and V ii)
- The setup below is used to prepare chlorine gas. Study it and answer the questions that follow: NB No heating is 2. applied to produce the gas.



	i)	Identify: Solid A	(1mark)
		Substance B	(1mark)
		Apparatus C	(1mark)
	ii)	Complete the setup above to show how chlorine gas is collected	(1mark)
	iii)	Name another substance that can be used to serve the same purpose as concentrated sulphuric (VI)	acid.
			(1mark)
	iv)	State the observations made when the following are put in a gas jar full of dry chlorine gas.	
		a) Dry blue litmus papers	(1mark)
		b) Red hot iron fillings	(1mark)
	v)	Write the equation for the reaction that occurs in (b) above	(1mark)
	vi)	Explain the following observations.	
I			

- A white precipitate is formed when hydrogen chloride gas is passed through aqueous silver nitrate (1mark) a) (1mark)
- Potassium bromide changes to yellow when chlorine gas is bubbled through the solution. **b**)





- What is the name of the apparatus above i)
- What is the name of the process which is used in separation of crude oil ii)
- iii) What physical property of the compounds in the mixture does the separation depend on. (1mark) (1mark)

(1mark)

(1mark)

(1mark)

- iv) Use the letter A to G to describe where the following could be formed:
- I) The fraction that represent gases
- (II) The fraction that represents the largest molecules
- b) The scheme below was used to prepare a cleansing agent. Study it and answer the questions that follow.





- i) Name the type of water hardness present in the sample
- ii) Identify two methods used to remove this type of hardness.
- d) Study the information in the table below and answer the questions that follow.

Salt	Solubility in g/ 100g water	
	At 40°C	At 60°C
Na NO ₃	38	24
Na Cl	101	52

A mixture containing 31g NaNO₃ and 47g NaCl in 100g of water at 60^oc was cooled to 40^oc.

- a) Which salt crystallizes out and by what mass
- b) Identify the method used to obtain crystals
- 5. a) The diagram below shows the Frasch process used for extraction of sulphur. Use it to answer the questions that follow.



- i) Identify X ..... (1mark)
- ii) Why is it necessary to use superheated water in this process?
- iii) State two physical properties of sulphur that makes it possible for it to be extracted by this method (2marks)b) The diagram below shows part of the process in the manufacture of sulphuric (VI) acid.
- Study it and answer the questions that follow



iWrite an equation for the reaction in the absorption chamber(1mark)ii)Explain how the acid is obtained after the reaction in the absorption chamber(1mark)iii)State two roles of the heat exchanger(2marks)iv)How is pollution controlled in the above process(1mark)

(1mark)

(1mark)

(1mark)

Complete the table below to show the observation made and property when sulphur (IV) oxide is bubbled c) through the following. (3marks)

Substance	Observation	Property
Acidified potassium Dichromate (VI) solution	(1mark)	(½mark)
Moist hydrogen sulphide	(1mark)	(½mark)

Use the following data to calculate the enthalpy change for the decomposition of calcium carbonate 6. a)  $Ca_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow Ca_{(s)} \Delta H = -635 \text{kJmol}^{-1}$ 

Ca (s) + C (s) +  $^{3}/_{2}O_{2}(g) \rightarrow$  Ca CO_{3(s)}  $\Delta$ H= - 1207kJ/mol  $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)} \quad \Delta H=-394 kJ/Mol$ 

- State **two** factors to consider when choosing a fuel b)
- The diagram below represents a set up used to determine the molar heat of combustion of ethanol. c)



**Results:** 

Initial water temperature  $=22.0^{\circ}C$ Final water temperature=44.5°C Mass of lamp before burning=126.5g Mass of lamp after burning =125.0g

(2marks)

(1mark)

Calculate:

- Heat given out during the experiment (density of water=  $1g/cm^3$ ,  $C = \frac{1}{2}kJ/kg/k$ ) i) (2marks) ii) Molar heat of combustion (C=12, O=16, H=1) (2marks) iii) Write the thermochemical equation for the combustion of ethanol (1mark) State Hess's law (1mark) d) i) ii) Study the information below and answer the questions that follow.  $MgCl_{2(s)} \rightarrow Mg^{2+}{}_{(g)} + 2 Cl_{(g)} \Delta H = +2487 kJ/mol$  $MgCl_{2(s)} + aq \rightarrow MgCl_{2(aq)} \Delta H_2 = -170 \text{ kJ/mol}$  $2\text{Cl}_{(g)}^{-} + (\text{aq}) \rightarrow 2\text{Cl}_{(aq)} \Delta \text{H}_{3}^{-} - 762 \text{kJ/mol}$ 
  - a) Name the enthalpies  $H_1$  and  $H_2$ (1mark) b) Determine the enthalpy for the reaction (2marks)  $Mg^{2+}(g) + (aq) \rightarrow Mg^{2+}(aq)$
- Study the flow chart below and use it to answer the questions that follow. 7. a)





# **CEKENAS PREMOCK EXAMINATION, 2023**

Kenya Certificate of Secondary Education

### 233/3

### **CHEMISTRY** PAPER 3

# **CONFIDENTIAL INSTRUCTIONS**

In addition to the laboratory facilities each student requires the following:

- About 50cm³ of solution P •
- About 80cm³ of solution Q .
- Two pieces of solid M .
- A burette .
- A pipette and pipette filler .
- 50cm³ measuring cylinder •
- Thermometer
- A stop watch .
- A 250ml volumetric flask •
- A 250ml empty beaker .
- A 100ml plastic beaker .
- One label .
- 2 conical flasks
- Complete stand .
- www.reek.csepastoaners.com About 10cm³ of liquid L in a stopped boiling tube. .
- Six test tubes and a test tubes rack .
- About 10cm³ of solutions R in boiling tube •
- Wooden splint
- Spatula .
- Filter paper and filter funnel .

### Access to

- Source of heat. •
- Distilled water
- Phenolphthalein indicator •
- Acidified potassium dichromate(vi) .
- Acidified potassium manganate(vii)
- 2M ammonia solution
- 2M sodium hydroxide solution .
- 2M HNO₃ acid .
- $2M H_2SO_4$ .
- Barium chloride solution

# PREPARATIONS

- Solution P is 2M dilute HCL
- Solution Q is 0.5M sodium hydroxide solution .
- Solid M is 2 pieces of magnesium ribbon each exactly 2cm long •
- Liquid L is 2M ethanoic acid solution .
- Solution R is a mixture of copper (II) sulphate and magnesium sulphate solution. •

# CEKENAS PREMOCK EXAMINATION, 2023 Kenya Certificate of Secondary Education 233/3 CHEMISTRY

PAPER 3 TIME: 2¹/₄ HOURS

# **INSTRUCTIONS TO THE CANDIDATES**

*a)* Answer <u>*ALL*</u> the questions in the spaces provided in this question paper.

- b) <u>ALL</u> working <u>MUST</u> be clearly shown where necessary.
- c) Mathematical table and silent electronic calculators may be used.

#### 1. You are provided with:

- i) Solution P which is a monobasic acid solution.
- ii) 2cm long magnesium ribbon labelled metal M.
- iii) 0.5M sodium hydroxide solution Q

You are required to:

- a) Calculate the mass of the 2cm long metal M.
- b) Determine the molarity of the dibasic acid solution P.

### **PROCEDURE 1**

- Measure exactly 40cm³ of solution P using 50ml measuring cylinder and transfer it into a 100ml plastic beaker.
- Measure the temperature of the solution after every thirty seconds for the first sixty and record in table I below.
- At exactly 90 seconds add the 2cm long solid M and record the temperature of the solution after every thirty seconds up to 300 seconds

(RETAIN THIS SOLUTION FOR PROCEDURE II BELOW)

Table I

Time(sec)	0	30	60	90	120	150	180	210	240	270	300
Temperature				Х	0	5					

a) Draw a graph of temperature against time in the grid provided below.

- b) From the graph determine the highest temperature change,  $\Delta T$
- c) Calculate the heat change for the reaction above in kJ (Density of solution = 1g/cm³ specific Heat capacity of solution =4.2Jg⁻K⁻mol⁻)
- d) i) Given that the molar enthalpy reaction between metal M and acid P is -1590kJmol⁻, determine the number of moles of metals M in the 2cm long pieces. (1mark)
- e) Given that R.A.M of Magnesium is 24.1. Calculate the mass of the 2cm long ribbon

# PROCEDURE II

- Transfer all the solution formed from procedure I into a 250ml volumetric flask.
- Add distilled water to the mark, transfer the solution into a 250ml beaker and this solution as P₁.
- Fill the burette with solution Q
- Pipette 25 cm  3  of solutions P₁ into a 250 ml conical flask.
- Titrate solution Q against P₁ using phenolphthalein indicator and record your results in table II below.
- Repeat the titration two more times to get consider values.

#### Table II

	Ι	II	III
Final Burette Reading (cm ³ )			
Initial Burette Reading (cm ³ )			
Volume of solution Q used (cm ³ )			

i) Calculate the average volume of solution Q used.

ii)	Calculate the number of moles of solution $P_1$ in the 25cm ³ of solution used.

- iii) Find the number of moles of acid P in the  $250 \text{cm}^3$  of P₁ prepared.
- iv) How many moles of the acid were present in the original  $40 \text{cm}^3$  of acid P.
- v) Calculate the molarity of the original acid P.

(4mks) (1mark) (2marks) (1mark)

(4marks)

(3marks)

(1mark)

(1mark)

(1mark)

(1mark) (1mark)

		out the tests below and record your observations and inferences
	in the spaces provided.	
a)	Add above 2cm ³ of sodium hydroxide solution to al	
	Filter the mixture and retain both residue and the fil	
	Observations	Inferences
	(1mark)	(1mark)
	Divide the filtrate into 5 portions of 2cm ³ each	(Tindik)
	To the first portion add about $2 \text{ cm}^3$ of 2M nitric (v)	acid.
	Observations	Inferences
	(½mark)	(1mark)
ii)	To the second portion add sodium hydroxide dropw	
	Observations	Inferences
	(1mark)	(1mark)
iii)	To the third portion add ammonia solution dropwise	
	Observations	Inferences
	(1mark)	(1mark)
iv)	To the fourth portion add 3 drops of 2M sulphuric (	VI) acid.
	Observations	Inferences
		01
	(½mark)	(½mark)
v)	To the fifth portion add three drops barium chlorid	e solution.
.,	Observations	Inferences
	(½mark)	(imark)
		2×
c)		a test tube. Add about $2 \text{ cm}^3$ of dilute nitric (v) acid and shake.
	To the solution formed add ammonia solution drop	
	Observations	Inferences
	(1mark)	(½mark)
3.	You are provide with liquid L. Perform the followin	g tests using 2cm ³ portions of liquid L writing your observations
	and inferences in the spaces provided.	
a)	To the first portion add an equal amount of distilled	water.
	Observations	Inferences
	(1mark)	(½mark)
b)	To the second portion add two drops of acidified po	stassium dichromate (VI) solution.
<i>,</i>	Observations	Inferences
	(1mark)	(½mark)
c)	To the third portion add acidified potassium manga	nate (vii) solution
	Observations	Inferences
	(1mark)	(½mark)
d)		agnesium ribbon), test the gas produced with a burning wooden
4)	splint.	"Succession in the sub-produced with a burning wooden
	Observations	Inferences
	(1mark)	(1mark)
1	· /	

#### **KIRINYAGA CENTRAL EFFECTIVE 40 JOINT EXAMINATION, 2023** 233/1CHEMISTRY PAPER 1 THEORY **TIME: 2 HOURS** Instructions to candidates a. Answer **ALL** the questions. Mathematical tables and electronic calculators may be used. b. All working **MUST** be clearly shown where necessary. c. State the most suitable method that can be used to acquire the first substance in the following mixtures. 1. a) Iodine from iodine and sand. i. (1mk)Water from salt solution. (1mk)11. b) Explain why a luminous flame of a Bunsen burner produces more light. (1mk)2. In very cold countries salts are sprinkled on the roads during winter. a) Explain why this is important. (1mk)b) Give one negative effect of this. (1mk)Sodium metal burns with a yellow flame in excess oxygen forming a yellow solid. The yellow solid reacts with 3. water to form gas F. a) Name the yellow solid. (1mk)b) Identify gas F. (1mk)c) Write an equation for the reaction of the yellow solid with water. (1mk)4 Chlorine gas was bubbled through water for some time. The green yellow solution formed was poured into a long glass tube and placed in the sun as shown in the diagram below. Sun rays Gas T Green yellow solution a) What compounds are in the green yellow solution? (1 mk) b) Write an equation to show how gas T is formed. (1mk)c) Give one use of chlorine. (1mk)0.21g of a gaseous hydrocarbon occupies a volume of 120 cm³. 5. a) Determine the molecular mass of the hydrocarbon. (Molar gas volume = $24 \text{dm}^3$ ) (2mks)b) The hydrocarbon decolourises bromine water. Write the structural formula of the hydrocarbon. $(^{1}/_{2} \text{ mk})$ c) Give the name of the hydrocarbon. $(1/_2 \text{ mk})$ Element T whose atomic number is 16 and mass number 32. Combine with oxygen whose atomic number is 8. 6. Determine the number of protons and neutrons in element T. a) (1mk)b) Name the type of bond formed between T and oxygen. (1mk)State the nature of the compound formed between T and oxygen. c) (1mk)7. The set up below was used to carry out electrolysis of lead bromide. Study and answer the questions that follow. Carbon U Carbon T 0 00 00 00 lo 0 Beaker ၀ Ó 0 Solid lead (II) 8 ,°° 0 bromide Identify electrode U and T. a) (1mk)

b) Identify with reasons on the missing condition in the above set up.

(2mks)

8. Bond energies for some bonds are tabulated below.

Bond	Bond energies
H-H	436
C= C	610
C-H	410
C-C	345

Use the bond energies to estimate the enthalpy of the reaction represented below.  $C_2H_4 + H_2 \longrightarrow C_2H_6$ 

**9.** The diagram below shows part of the Frasch process used for extraction of sulphur. Use it to answer the questions that follow.



- ii. A long while
- b) Write the formula of the ion formed in the beaker in a (ii) above.

(3mks)

**13.** Study the table below and answer the question that follow.

Solution	pН
А	3.0
В	14.0
С	8.0

i.	In which solution will phenolphthalein indicator be colourless? Explain	(1mk)
ii.	Which of the solutions can be used to relieve a heartburn. Explain	(1mk)
	Which two solutions can react with zinc oxide.	(1 mk)
	The diagram below shows a set up that was used to show the part of air used in burning.	(1)
	Inverted gas jar	
	A piece of burning	
	phosphorous	
	Water	
		1
a)	Given that phosphorous was in excess, draw a diagram of the set up at the end of the experiment wi	
1.)	no further observable change.	(1 mk)
b)	Suggest of one modification that can be made to the apparatus if the percentage of air used is to be	
	White an expression to show how the new set of sin is used is calculated at the and of the expression	(1mk)
c)	Write an expression to show how the percentage of air is used is calculated at the end of the experime	
15.	a) State the Graham's law of diffusion.	(1mk)
	b) 100cm ³ of methane gas diffused through a porous partition in 40 seconds. How long would 90cm ³	-
	$(O_3)$ diffuse through the same partition. (3mks)	
	(C = 12, H = 1, O = 16)	
16.	. Describe how a sample of zinc carbonate can be prepared from the following reagents zinc (II) oxide	e, dilute nitric
	(V) acid, water and solid potassium carbonate.	(3mks)
17.	a) The melting point of phosphorous (III) chloride is $-918^{\circ}$ C and that of sodium chloride is $801^{\circ}$ C	· /
	Explain the huge difference in their melting points.	(2 mks)
	<ul><li>b) State the property which makes it possible for phosphorous to be stored under water.</li></ul>	(1  mk)
10	When 16g of ammonium nitrate was dissolved in 100cm ³ of water at 25 ^o C, the temperature of the so	· /
10.		Iution formed
	dropped to 19°C. Calculate the molar enthalpy of solution of ammonium nitrate.	
	(N = 14, H = 1, O = 16)	(3mks)
19.	Ammonia burns in air in the presence of a catalyst as shown in the equation below.	
	$4NH_{3 (g)} + 5O_{2(g)} = 4NO_{(g)} + 6H_2O_{(g)}$	
i.	Given that an increase in temperature reduces the amount of ammonia gas. State and explain whether	er the forward
	reaction is exothermic or endothermic.	(2 mks)
ii.	How will increase in pressure affect the yield of nitrogen (II) oxide?	(1mk)
	After 7.5 hrs the percentage of a certain nuclide in a sample of ore was found to be 12.5%.	
a)	What is meant by the term half-life?	(1mk)
b)	Determine the half-life of the nuclide.	(2mks)
		(211185)
21.	Name the following compound.	
	i. CH ₃ CH ₂ CH ₂ C	
	OH	
	ii. CH ₃ COOCH ₂ CH ₂ CH ₃	(1 mk)
	b) Complete the equation below.	(1  mk)
		()
	$H_{H} = C = C H_{H} + H^{+}/KMnO_{4} \rightarrow$	
	H' H	
1		



### **INSTRUCTIONS TO CANDIDATES**

- 1. Answer all questions
- 2. Mathematical tables and electronic calculators may be used.
- 3. All working must be clearly shown where necessary.

1. a) An atom Q can be represented as  ${}^{52}_{24}Q$ .

What does the number 52 represent?

b) Study the information in the table below and answer the equation that follow. (Letters are not the actual symbols of the element)

Element	Electronic arrangement	Atomic	Ionic
	Of stable ion	radius	radius
		(nm)	(mm)
Ν	2.8.8	0.197	0.099
Р	2.8.8	0.099	0.181
R	2.8	0.160	0.065
S	2.8	0.186	0.095
Т	2	0.152	0.068
U	2.8	0.072	0.136

i. Write the formula of the compound formed when N reacts with P. (Atomic number are N = 20, P=17)

ii. Identify the elements which belong to the third period of the periodic table. Explain.

- iii. Which of the element identified in b(ii) above comes last in the third period? Explain.
- iv. Select two elements which are non metals.
- c) The table below gives properties of substances I, II, III and IV. Study it and answer the questions that follow.

Substances	Electrical conductivity	7	$M.P(^{0}C)$	$B.P(^{0}C)$
	Solid	Molten		
Ι	Does not conduct	Conducts	801	1420
II	Conducts	Conducts	650	1107
III	Does not conduct	Does not conduct	1700	2200
IV	Does not conduct	Does not conduct	113	440

- i. What type of bonding exists in substances I and II?
- ii. Which substances is likely to be sulphur? Explain.

(2mks) (2mks)

(1mk)

(1mk)

(2mks)

(2mks)

(1mk)

Page | 121



ii. Chamber N

(1mk)(1mk)



a)		(1mk)
	ii. Explain why there is loss in mass.	(1mk)
b)		
	I: Same mass of zinc powder was used under the same conditions. Label it P.	(1mk)
	II: No catalyst was used. Label it N.	(1 mk)
c)	In the contact process, sulphur(IV) oxide is converted to sulphur (VI) oxide in the catalytic	ic chamber in which
	dynamic equilibrium is reached.	
	$2 \operatorname{SO}_{2(aq)} + O_{2(g)} \cong 2 \operatorname{SO}_{2(g)} \Delta H = -97 \text{kJ/Mol}$	
i.	What is meant by dynamic equilibrium?	(2mks)
ii.	State and explain how each of the following would affect the position of the equilibrium.	
I.	Decrease in pressure.	(2mks)
II.	I	(2mks)
d)		
d)	An equilibrium exists between chromate and dichromate ions as shown below. $2CrO_4 {}^{2-}_{(aq)} + 2H^+ \implies Cr_2O_7 {}^{2-}_{(aq)} + H_2O_{(l)}$	
d)		
d)	$2 \operatorname{CrO}_{4}^{2-} _{(aq)} + 2 \operatorname{H}^{+} = \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-} _{(aq)} + \operatorname{H}_{2} \operatorname{O}_{(l)}$	ve mixture.
d)	$2\operatorname{CrO}_{4}^{2-}_{(aq)} + 2\operatorname{H}^{+} \rightleftharpoons \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}_{(aq)} + \operatorname{H}_{2}\operatorname{O}_{(l)}$ (yellow) (aq) (Orange)	ve mixture. (2mks)
d)	$2\operatorname{CrO}_{4}^{2-}_{(aq)} + 2\operatorname{H}^{+} \rightleftharpoons \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}_{(aq)} + \operatorname{H}_{2}\operatorname{O}_{(l)}$ (yellow) (aq) (Orange)	
d) 6.	$2 \operatorname{CrO}_{4}^{2-}_{(aq)} + 2 \operatorname{H}^{+} \underbrace{\longrightarrow}_{(aq)} \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-}_{(aq)} + \operatorname{H}_{2} \operatorname{O}_{(l)}$ (yellow) (aq) (Orange) State and explain the observation made when aqueous sodium hydroxide is added to the abo	
,	$2 \operatorname{CrO}_{4}^{2-}_{(aq)} + 2 \operatorname{H}^{+} \underbrace{\longrightarrow}_{(aq)} \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-}_{(aq)} + \operatorname{H}_{2} \operatorname{O}_{(l)}$ (yellow) (aq) (Orange) State and explain the observation made when aqueous sodium hydroxide is added to the abo	
,	$2 \operatorname{CrO}_{4}^{2-}_{(aq)} + 2 \operatorname{H}^{+} \underbrace{\longrightarrow}_{(aq)} \operatorname{Cr}_{2} \operatorname{O}_{7}^{2-}_{(aq)} + \operatorname{H}_{2} \operatorname{O}_{(l)}$ (yellow) (aq) (Orange) State and explain the observation made when aqueous sodium hydroxide is added to the abo	(2mks)
,	$2\operatorname{CrO}_{4}^{2-}_{(aq)} + 2\operatorname{H}^{+} \underbrace{\longrightarrow}_{(aq)} \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}_{(aq)} + \operatorname{H}_{2}\operatorname{O}_{(l)}$ (yellow) (aq) (Orange) State and explain the observation made when aqueous sodium hydroxide is added to the abo a) The table below shows properties of chlorine, bromine and iodine.	(2mks)
,	$2 \operatorname{CrO_4}^{2-} \operatorname{(aq)}^{+} 2 \operatorname{H^+} \underbrace{\longrightarrow}_{(\operatorname{aq})}^{2-} \operatorname{(aq)}^{+} \operatorname{H_2O}_{(l)}$ (yellow) (aq) (Orange) State and explain the observation made when aqueous sodium hydroxide is added to the abo a) The table below shows properties of chlorine, bromine and iodine. $\underbrace{\text{Element}  \text{Formula}  \text{Colour and state room temperature}  \text{Solubility in variable}}_{\text{Solubility in variable}}$	(2mks)

Complete the table by giving the missing information in (i), (ii) and (iii) (3mks)

- Chlorine gas is prepared by reacting concentrated hydrochloric acid with manganese (IV) oxide. b)
- Write the equation for reaction between concentrated hydrochloric acid and manganese (IV) oxide. (1mk) i. (1mk)
- What is the role of manganese (IV) oxide in this reaction. ii.
- Iron (II) chloride reacts with chlorine gas to form substance E. Identify substance E. c) i. (1mk)
  - ii. During the reaction in c(i) above, 6.30g of iron (II) chloride were converted to substance E. Calculate the volume of chlorine used. (3mks)

(Cl = 35.5, Molar gas volume at from temperature = 24000 cm³, Fe = 56)

Draw and name the structure of the compound formed when excess chlorine gas is reacted with ethane gas. d)

(2mks) (2mks)

- Give two industrial uses of chlorine. e)
- 7. In an experiment 50cm³ of 1.0M sodium hydroxide solution was placed in a suitable apparatus and 5.0cm³ portion of hydroxide acid were added. The resulting mixture was stirred with a thermometer and temperature recorded after each addition.

Volume of HCl (cm ³ )	5	10	15	20	25	30	35	40	45	50
Temperature ( ⁰ C)	21.5	22.5	24.0	25.0	26.0	27.0	27.5	27.5	27.0	26.5
Plot a graph of temperature a	gainst v	olume o	f the acid a	dded					(31	nke)

a)	Plo	ot a graph of temperature against volume of the acid added.	(3mks)
b)	i.	From the graph determine volume of HCl used to neutralize 50cm ³ of 1M NaOH.	(1mk)
	ii.	Hence determine concentration of the HCl in moles per litre.	(3mks)
c)	i.	Calculate the amount of heat produced in the reaction	
		(Specific heat capacity = $4.2 \text{ kjKg}^{-1} \text{ k}^{-1}$ and density of the solution $1 \text{ g/cm}^{-3}$ )	(2 mks)
	ii.	Hence calculate the molar enthalpy of neutralization of sodium hydroxide.	(1mk)

#### **KIRINYAGA CENTRAL EFFECTIVE 40 JOINT EXAMINATION, 2023** 233/3**CHEMISTRY** PAPER 3

#### **CONFIDENTIAL**

#### Each candidate should have the following :-

- 1.  $90 \text{ cm}^3$  of solution X.
- 2.  $100 \text{ cm}^3$  of solution Y.
- 3.  $120 \text{ cm}^3$  of solution Z.
- 4. 6 test tubes in a rack and 1 boiling tube.
- 5. 50ml measuring cylinder.
- 6. A conical flask.
- 7. A burette.
- 8. A 25ml pipette.
- 9. A thermometer  $(-10^{\circ}C 110^{\circ}C)$
- 10. Stopwatch.
- 11. About 15cm³ of liquid Q.
- 12. Watch glass.
- 13. Test tube holder.
- 14. 0.1g NaHCO₃.
- 15. A dropper.
- astpapers.com 16. 1g ammonium iron (II) sulphate hexahydrate. (labelled solid T) (NH₄)₂ SO₄FeSO₄.6H₂O)
- 17. 500cm³ distilled water in a wash bottle.
- 18. Metallic spatula.
- 19. One blue litmus paper and one red litmus paper.

#### Access to:-

- 1. 2M NaOH with own dropper.
- 2. 0.1M acidified potassium dichromate (VI) with a dropper
- 3. 0.2 Macidified barium nitrate with own dropper.
- 4. 20% hydrogen peroxide with own dropper.
- 5. 2M NH₄OH with own dropper.
- 6. 0.02M acidified potassium manganate (Why with a dropper.
- 7. Bunsen burner flame.

#### Solution preparation confidential

- Solution X- Ferrous Ammonium sulphate. 1. Prepared by dissolving 34 of Ferrous Ammonium Sulphate in 1000cm³ of distilled water. Note that this solution should be prepared the morning of the exam and also per shift to prevent oxidation.
- Solution Y Acidified potassium manganate (VII). 2. Prepared by dissolving 3g of potassium Manganate (vii) crystals in 800cm³ of distilled water then adding 200cm³ of 2M sulphuric (VI) acid.
- Solution Z Oxalic acid. 3 Prepared by dissolving 6.3g of oxalic acid in 1000cm³ of water.
- Acidified potassium dichromate (VI) is prepared by dissolving 29.4g in 200cm³ 2M sulphuric (VI) acid and top 4. up to 1litre using distilled water.
- Acidified barium nitrate is prepared by dissolving 52.3g of barium nitrate in  $200 \text{ cm}^3$  of HNO₃ and top up the 5. solution with distilled water to 11 (1000cm³)
- 6. Liquid Q is ethanol.

#### **Instructions to candidates**

- a. Answer ALL the questions
- b. All working MUST be clearly shown where necessary.

#### **1.** You are provided with :

- (i) Solution X; ferrous ammonium sulphate (FeSO4 (NH4)2SO4.nH2O) 8.5g in 250cm³ of solution.
- (ii) Solution Y; 0.02M acidified potassium manganate (VII).
- (iii) Solution Z; An organic substance.

#### You are required to:

- (i) Determine the value of n in FeSO₄. (NH₄)₂SO₄ .nH₂O.
- (ii) Determine how the rate of reaction between acidified potassium manganate (VII) and the organic substance varies with temperature.

#### Procedure 1

Fill the burette with solution Y, pipette 25cm³ of solution X into a conical flask and titrate until the solution turns to pink colour.

(4mks)

(1 mk)

(1 mk)

(1 mk)

(1 mk)

(1mk)

(1mk)

(4 mks)

(3mks)

Record your results in the table 1 below, repeat the procedure 2 more times to complete table 1 below.

Retain the remaining solution Y for procedure 2.

#### Table 1

	1	2	3	
Final burette reading (cm ³ )		×O ×O		
Initial burette reading(cm ³ )		S		
Volume of solution Y used (cm ³ )		č		
		<b>O</b>		

- i. Calculate the average volume of solution Y used
- ii. Calculate the number of moles of solution Y used.

b) Given that the equation for the reaction between solution Y and X is:  $MnO_{4 (aq)} + 8H_{(aq)}^{+} + 5Fe^{2+} (aq) \longrightarrow Mn^{2+} (aq) + 5Fe^{3+} (aq) + 4H_2O_{(l)}$ 

i. The number of moles of iron (II) salt, solution X in 25cm ³ of the solution used.	
-------------------------------------------------------------------------------------------------	--

- ii. The concentration of solution X in moles per litre.
- iii. The relative formula mass of the iron (II) salt.
- iv. The value of n in the formula  $FeSO_4 \cdot (NH_4)_2SO_4.nH_2O$ .
- (Fe = 56, N = 14, S = 32, Q = 16, H = 1)

#### Procedure 2

Using a burette place 1 cm³ of solution Y in each of the 5 test tubes on the rack.

Measure 20cm³ of solution Z into a boiling tube using a measuring cylinder.

Put a thermometer into solution Z in the boiling tube and warm it until it attains a temperature of  $40^{\circ}$ C. Place the boiling tube in the rack and add the first portion of solution Y in the test tube and immediately start the start watch. Record the time taken for the purple colour to be decolourised in the table 2 below.

Repeat the procedure above with 20cm³ solution Z at 50°C, 60°C, 70°C and 80°C to fill table 2.

Clean the test tubes and the burette immediately you finish the experiment.

Temperature of solution Z ( ⁰ C)	40	50	60	70	80
Time taken for colour to decolourise (sec)(t)					
Rate $1/t$ (sec ⁻¹ )					

a) On the grid below, plot a graph of rate  $\binom{1}{t}$  against temperature  $\binom{0}{C}$ .

b) From the graph, determine the time for decolourisation of the mixture if temperature of solution was  $58^{\circ}$ C. (1mk)

c) Explain how the rate of reaction between solution Y and solution Z varies with change in temperature. (2mks)

2.		u are provided with organic liquid Q. Carry out the to ces provided.	ests below and write the observations and inferences in the
a)	Ûsi	ing an dropper, place 5 drops of liquid Q on a watch good a back of the second se	glass and ignite with non – luminous flame. I Inferences
b)	i.	(1mk) Divide the remaining liquid Q into 4 portions. To vigorously for about 30 seconds and allow to settle. <b>Observations</b>	$(^{1}/_{2} \text{ mk})$ the 1 st portion, add about 3cm ³ distilled water and shake I Inferences
	_		
	ii.	$(^{1}/_{2} \text{ mk})$ To the 2 nd portion add the NaHCO ₃ provide. <b>Observations</b>	(1mk)
			Inferences
	iii.	( ¹ / ₂ mk) To the portion, add three drops of acidified potassiu <b>Observations</b>	(1mk) Im manganate (VII) I Inferences
	_	$(^{1}/_{2} \text{ mk})$	(1mk)
	iv. a)	You are provided with acidified potassium dichrom	ate(VII), source of heat, test tube and test tube holder. using the reagents provided and the expected observations
		Test	Expected observations
		(1mk)	(1mk)
	b)	Carry out the test(s) in iv(a) above and write the obs Observations	servations and inferences. Inferences
3.	Vo	$(^{1}/_{2} \text{ mk})$	wand write the observations and inferences in the spaces
з. а)	pro	vided to identify the ions in T.	
u)		st for the gases produced using moist blue and red lit	tmus papers.
	-	Observations	Inferences
b)		(1mk) Insfer the remaining solid into a clean boiling tube an vide the resulting solution into 4 portions.	(1mk) and add about 10 cm ³ distilled water and shake.
	DIV	Observations	Inferences
		(1mk)	(1 mk)
c)	То	the 1st portion add 3 drops of acidified potassium die Observation	chromate(VI). Inference
d)	То	(1mk) the second portion add 3 drops of acidified barium n	(1mk) itrate provided.
,		Observations	Inferences
	То	(1 mk) the 3 rd portion, add three drops of ammonium hydrox <b>Observation</b>	(1mk) xide.   Inferences
e)			
e) f)	То	$(^{1/_2}mk)$ the 4 th portion, add 4cm ³ of H ₂ O ₂ followed by 3 drop	$(^{1}/_{2}mk)$ os of 2M sodium hydroxide.
,	То	( ¹ / ₂ mk)	

### WEITHAGA JOINT MOCK EXAMINATIONS, 2023 Kenya Certificate of Secondary Education 233/1 **CHEMISTRY** Paper 1 (Theory) **TIME: 2 HOURS**

2.

3.

i)

1. Three pure pigments were prepared and their spots placed on a filter paper as shown below. The pure pigments are A, B, and C. A mixture F was also placed on the filter paper at the same time with the pure pigments. The filter paper was then dipped in ethanol solvent and left for some half an hour. The results obtained were as follows:



- ii) precipitate T is formed. The white precipitate dissolved in excess sodium hydroxide to form a colourless solution.
- iii) A solution of potassium iodide is added to the third portion where a yellow precipitate (U) is formed.
- iv) When the resulting solution is evaporated to dryness and heated strongly a yellow solid (V) is formed and a brown gas (W) and a colourless gas (X) are formed.

a.	Identify the substances P, S, T, U, V, W	3 marks
b.	Write an ionic equation of the reaction that occurs in part (iii)	1 mark



8. The graphs below were drawn when 15g of marble chips in different physical states were reacted with 50cm³ of 2M Hydrochloric acid. They are drawn by measuring the volume of carbon (iv) oxide produced with time.









# WEITHAGA JOINT MOCK EXAMINATIONS, 2023 Kenya Certificate of Secondary Education

233/2 Chemistry PAPER 2 (Theory) TIME: 2 HOURS

1. I) The table below shows properties of some elements represented by symbols W, X, Y and Z. Study the information in the table and answer the questions that follows

Element	No. Of protons	Atomic radius(nm)	Boiling point ⁰ C
W	2	0.93	-269
Х	10	1.31	-246
Y	18	1.54	-186
Ζ	36	1.89	-152

- a) Write down the electron arrangement for elements W and X (1mk)
- b) In which group of the periodic table are the elements in the table above? Give the name of the group (2mks)
- c) Explain why the atomic radius of W is smaller than that of X
- d) state one use of element X
- II. The section below represents part of the periodic table. Study it and answer the questions that follow. The letters are not the actual symbol of the elements.

	C C C C C C C C C C C C C C C C C C C				
		Q			
X	B	H	Μ	Т	
Y	A			V	
Ζ				S	

a) Select the least reactive non-metal.

(1mk)

(2mks)

(2mks)

(1mk)

(1mk)

- b) Which of the elements has the greatest tendency of forming covalent compounds in nature? Explain your choice. (1mk
- c) Explain why the atomic radius of T is smaller than that of M.
- d) Compare the electrical conductivity of element X and B.
- 2. Two half cells were connected as shown to form a voltaic cell. The reduction potentials are given.



	e)	During electrolysis of v i) State which ions a equations.									
		Anode.							(	1mk)	
		Cathode.							`	1mks)	
		ii) Calculate the volu hours. (1 Farada		-	t s.t.p pr	oduced v	when a cu	urrent of		is passed f 3mks)	for 4
3.	a)	The fermentation of glucose is catalysed by enzymes from yeast. Yeast is added to aqueous glucose the solution starts to bubble and becomes cloudy as more yeast cells are formed. $C_6H_{12}O_{6(aq)} \longrightarrow 2C_2H_5OH_{(aq)} + 2CO_{2(g)}$						glucose,			
		The reaction is exother about 12%.		-			-				
		(i) On a large scale, the	ne reactio	n mixtu	re is coo	led. Su	ggest a r	eason wl	•	•	<i>.</i>
		(ii) Why does the form	ontation	stop? Si	uggast of				`	1 mk	
		<ul><li>(ii) Why does the ferm</li><li>(iii) What technique is</li></ul>		-	00				`	1mk) 1mk)	
	b)	A compound X contair	s carbon,	, hydrog	en and o	xygen o	nly. X co		<b>4.54%</b> of	/	y mass,
		9.09% of hydrogen by	mass and	<b>36.3</b> 7%	o of oxyg	gen by m	ass. (C=	12, 0=1	6, H=1)		
		(i). Determine the emp	pirical for	mula of	compou	ınd X.		G	(	2mks)	
		(ii). Compound X has					raw the	structura			
		compound X					<u>`</u>		(	2mks)	
	c)	The table below gives		of three	organic	compou	nds A, B	and C			
		Compound H				- <b>v</b> O'					
			$C_2H_4O_2$			GVX-					
			C2H6O C2H6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
		Giving a reason in each		lect the	letter(s)	which re	nresent	a compo	und that		
		i). Decolorizes acidif					present a	i compo		1mk)	
		ii). Gives effervescene	-		0	· /	te.		`	1mk)	
		iii). Undergoes substitu	ution reac	tion wit	h chlori	ne gas.			(	1mk)	
	d)	The following is a sma	ll reaction	n of poly	ystyrene	polymer	: Study	it and an	swer the	questions	that
		follow.	1.1								
		H N	н н	н							
		follow.		– r							
		H .	C₀H₅ H	C₀H	ls )						
					/						
	(i)	Draw the structure of t				•		0 1	`	1mk)	C
	(11)	Calculate the number of $H = 1$ C = 12		iers usec	to form	the poly	ystyrene	of relativ			of
		18096. (H = 1, C = 12)	. )						(	1mk)	
4.	An	experiment was carried	out using	g magne	sium rib	bon and	dilute hv	drochloi	ric acid o	of different	t
		centrations. The time ne									
	tabl		· · · · · · · · · · · · · · · · · · ·		1	1	1	1	-1		
		Concentration of	2.0	1.75	1.50	1.25	1.00	0.75	0.50	0.25	
		HCl (moles per litre)	0.0	10.0	11.7	14.0	175	107	25.0	70.0	
		Time (seconds)	8.8	10.0	11.7	14.0	17.5	18.7	35.0	70.0	
		$\frac{1}{time}$ (Sec ⁻¹ )									
	a)	Complete the table abo	ve for ¹ / _f	ime.	1	1	1	1	(	4mks)	
	b)	Plot a graph of rate i.e			centratio	n.			`	(3mks)	
			-								
					Page   1	43					



	b)	Define radioactivity Study the diagram below and answer the questions that follow	(1mk)
	5)		
	i)	What property of radiations is being investigated by the illustration above	( 1mk)
	ii)	Give the name of the radiation B and give a reason.	(2mks)
7	a).	A metal F is very reactive and therefore it is extracted by electrolysis of its fused	l chloride. The
		electrolytic cell used in its extraction is made of anode surrounded by a ring-sha	
		enclosed in a wire gauze shell that acts as a partition separating the two electrod to air it loses its lustre. At 620°C, it reacts with liquid ammonia liberating hydro	
		as a deoxidizing agent in the preparation of light alloys and some rare earth met	
		oxides.	
		i) Name the process by which metal F is extracted.	(1mk)
			(1mk)
		<ul><li>iii) State the name of the ore from which metal F is extracted.</li><li>iv) Explain why the metal loses its lustre when exposed to air.</li></ul>	(1mk) (1mk)
		v) What is the function of wire gauze shell that separates the anode from the c	
			(1mk)
		vi) Write a chemical equation for the reaction between metal F and ammonia	(1mk)
	<b>b</b> )	vii) Apart from being a deoxidizing agent, state two other uses of metal F.	(1mks)
	b)	During extraction of aluminium by electrolysis, molten cryolite is used instead of anode must be replaced from time to time	of water and the
		i) State the main ore from which aluminium is extracted	(1mk)
		ii) Explain why cryolite is preferred over water	(1mk)
		iii) Give a reason why the anode is replaced from time to time.	(1mk)
		iv) Extraction of aluminium is very expensive compared to other metals like Ir	on, explain (1mk)
8.	a)	Consider the following reaction:	(THK)
-	,	$A_2(g) + B_2(g) \longrightarrow 2AB(g), \qquad \Delta H = +75 \text{ kJ}$	
		Sketch an energy level diagram showing the relative activation energies for the uncatalysed reactions using the axes below.	•
		uncatarysed reactions using the axes below.	(2mks)
	(b)	The following data was obtained during an experiment	
		Mass of ethanol burnt $= 0.2g$	
		Mass of water in the calorimeter $= 200g$	
		Specific heat capacity of water = 4.2 jg-1k-1 Initial temperature of water = 23.5 0C	
		Final temperature of water $= 23.5 \text{ GC}$ = 28.0  OC	
		1	
	i)	How was the mass of ethanol that burnt determined?	(1mk)
	ii) iii)	How much heat was required to raise the temperature of water from 23.5 $0^{\rm C}$ to 2 Two assumptions were made in calculating the enthalpy of combustion for ethan	
	111)	Two assumptions were made in calculating the entitalpy of combustion for ethal	(1mk)
	iv)	Determine the molar enthalpy of combustion of ethanol. (C= 12,H=1,O=16)	(2mks)
	v)	Write a thermochemical equation for the combustion of ethanol given the accura	ate value for
	.)	enthalpy of combustion is $-1368 \text{ kJmol}^{-1}$ .	(1mk)

#### WEITHAGA JOINT MOCK EXAMINATIONS, 2023 <u>Kenya Certificate of Secondary Education</u> 233/3 Chemistry (PRACTICAL) Paper 3 TIME: 2¼ HOURS

- 1. You are provided with:-
  - Solid T, hydrated ethanedioic acid H₂C₂O₄.nH₂O.
  - Solution Q, 0.2M solution of sodium hydroxide.
  - You are required to determine:
  - (i) Solubility of solid T.
  - (ii) The value of n is the formula  $H_2C_2O_4.nH_2O$ .

#### Procedure I

- (i) Fill the burette with distilled water.
- (ii) Place solid T in the boiling tube.
- (iii) Transfer  $4\text{cm}^3$  of distilled water from the burette into the boiling tube containing solid T. Heat the mixture while stirring with the thermometer to a temperature of  $80^{\circ}$ .
- (iv) Allow the solution to cool while stirring with the thermometer. Record the temperature at which crystals start to form in the table 1 below.
- (v) Add a further 2cm³ of distilled water from the burette to the mixture. Repeat the procedure (iii) and (iv) above and record the crystallization temperature. Complete the table I below by adding the volumes of distilled water as indicated.

### (Preserve the contents of the boiling tube for procedure II)

#### TABLE I

Volume of distilled water in boiling tube	Crystallization temperature	Stability of solid T in 100g / water
4		
6		
8		
12		

(6mks)

(1mk)

(2mks)

(a) On the grid provided, plot a graph of solubility of solid T (y-axis) against crystallization temperature. (3mks)

From the graph determine:

(i) Solubility of T at  $55^{\circ}$ C

(ii) The temperature at which 80g of T dissolve in 100g of water.

# Procedure II

- Transfer the contents of the boiling tube in procedure I to a clean 250ml volumetric flask. Add distilled water to the mark. Label the resulting solution T.
- Fill the burette with solution T. Pipette 25cm³ of Q into a clean 250ml conical flask. Add 3 drops of phenolphthalein indicator.
- Titrate T against Q to an accurate end point. Record your results in the table II below.
- Repeat the experiment two more times and complete the table II below.

# <u>Table II</u>

	Ι	II	III
Final burette reading cm ³			
Initial burette reading cm ³			
Volume of T used cm ³			
			(4mks)

Calculate: (a) Average volume of T used. (1mk)(b) (i) Moles of Q used. (1mk)(ii) Moles of T used. (1mk)(iii) Concentration of T in molar per dm³. (1mk)(c) Determine the value of n in the formula  $H_2C_2O_4.nH_2O$ . (2mks) 2. You are provided with solution D. You are required to carry out the tests on solution and record your observations and inferences in the space provided. (i) To about  $2 \text{cm}^3$  of solution D, add 3 drops of potassium iodide solution. Observations Inference (1mk)(1mk)(ii) To the remaining portion in the boiling tube add 5cm³ of dilute hydrochloric acid and warm. Leave it to cool and filter. Observation Inference (1mk)(1mk Divide the filtrate into two portions. (iii) To one portion, add sodium hydroxide drop-wise until in excess. Observation Inference (1mk) (1mk)(iv) To 2nd portion, add aqueous ammonia drop-wise till in excess. Observation Inferences (1mk)(1mk)(v) To 3rd portion, add all zinc granules provided and warm. Observation Inferences (Imk (1mk)3. You are provided with solid R. Carry out the tests below and record your observations and inferences in the spaces provided. (i) Place one third of solid R on a metallic spatula. Burn it in a non-luminous flame of the Bunsen Burner. Observation Inference (1mk)(1mk)(ii) Place the remaining solid in a test-tube. Add about 6cm³ of distilled water and shake the mixture well. Observation Inference (1mk)(1mk)Divide the solution into 3 portions.

	Inference
(1/2mk)	(1/2mk)
To about 1cm ³ , add 3 drops of ac	cidified chromate (vi) and warm.
Observation	Inferences
(1mk)	(1mk)
In another 2cm ³ , add 2 drops of a	acidified potassium manganate (vii).
Observation	Inferences
(½mk)	(½mk)
www.tree	( ^{1/2} mk)

# WEITHAGA JOINT MOCK EXAMINATIONS, 2023

Kenya Certificate of Secondary Education 233/3 Chemistry (PRACTICAL) Paper 3

# **CONFIDENTIAL INSTRUCTIONS TO SCHOOLS**

Each candidate will require the following in addition to the apparatus and fittings in a Chemistry Laboratory:-

- $100 \text{cm}^2$  of solution Q. 1.
- 2. Accurately weighed 4.0g of hydrated ethanedioic acid - Solid T.
- 3. One burette – 50ml.
- 4. One pipette – 25ml.
- 5. One pipette filler.
- One 250ml volumetric flask. 6.
- One thermometer  $-10^{\circ}C 110^{\circ}C$ . 7.
- 8. One boiling tube.
- 9. Six test-tubes in a rack.
- 10. One metallic spatula.
- 400cm² of distilled water. 11.
- 12. Means of labeling.
- About 0.5g of NaHCO₃ Solid A. 13.
- 5cm³ of solution D. 14.
- 15. About 1g of solid R.
- Bunsen burner. 16.

### Access to:

- exceedasta apers. com 2M aqueous ammonia solution supplied with a dropper. •
- Phenolphthalein indicator supplied with a dropper.
- 0.5M KI solution. •
- 2M HCL .
- 2M NaOH •
- Zinc granules. (0.5 g)•
- Acidified KMnO₄ supplied with a dropper. .
- Acidified K₂Cr₂O₇ supplied with a dropper. .
- Solution D is a mixture of Pb (NO₃)₂ and Cu (NO₃)₂ (ratio 1:1) .
- Solid R is a maleic acid. .

_				NTY SCHOOLS	S EXAMI	NATION	N.				
<u>Ner</u> 233		<u>i Ceriificale</u>	oj seconaa	ary Education							
		istry									
Pap		-									
(Th											
		<u>: 2 HOURS</u>									
1 11	11	<u>. 2 moons</u>									
1	a	bauxite		ore found in the ex		of Alumin	nium. <b>Na</b>		mpuritie 2mks)		
	b	i) zinc		of both zinc and						(1m	ık)
_		/ 11									
2.	a	•	-	ts formed when d	-		le is disso	olved in v		,	
	b			quation for the re	eaction abo	ove			(]	mk)	
3.	S			owing substances						(3m	iks)
		· ·									
		,									
		111) Tinct	ure of 10d1n	ne		• • • • • • • • • • • • •	•••••				
4	т	<b>M</b> • 1 1 1			1 1.1	C 1 ·	1	G		1 ( C 11	<b>T</b> 1
4.				s part of the perio				ver the qu	lestions 1	that follow	v.The
	le	etters given de	o not repres	sent the actual syn	mbols of t	he eleme	ents.				
		[]									
				<u> </u>		-7	X		•		
			D			XO		D	A	E	
		Г	B					D		E	
		F	G		{~~					TT	
										Н	
	• \		1 1		$\mathcal{C}^{\mathcal{O}}$				(1	( 1)	
	i)			hat can form a div						$\frac{1}{2}$ mk).	
	ii			ture would the ox			70			$\frac{1}{2}$ mk).	
				ng point of A com						⁄2mk).	1
	1\	, e		npletely when hea					,	-	late the
		relative at	omic mass	of B.(1 mole of g	gas occupi	es 22.4 li	itres at s.t	t.p.)	(1	$\frac{1}{2}$ mk).	
5.	E	<b>xplain</b> the di	ifferences in	n bleaching prope	erties of ch	nlorine an	nd sulphu	r (use eq		where nec 3mks)	essary)
6.				nnected to form a	a cell as sh	own in t	he diagra	m below.	Their re	eduction	
	p	otentials are a		elow:							
		$K^+_{(aq)}/K_{(s)}$									
		$\mathrm{N^+_{(aq)}}/\mathrm{N_{(s)}}$	=+1.1  6V								
		Metz	al K	(v) ]		— Ме	etal N				
		K ²⁺ (aq)					N ²	?+ (aq)			

	<ul> <li>i) P is made by dipping a filter paper in a solution of sodium nitrate, on the sa direction of flow of ions</li> <li>ii) On the diagram, show the flow of electrons</li> <li>iii) Write the equation for the half-cell reaction that occurs at Metal K electrode</li></ul>	lt bridge <b>show</b> the (1mk) (1mk) (1mk)
7.	Write equations for the reactions between the following metals and steam.	(3mks)
	Iron Zinc	
8.	Copper Study the diagram below and answer the questions that follow.	
01		Gas W which
	Solution of a     BaCl _{2(aq)} Solid V     HCl _(aq)	turns K ₂ Cr ₂ O ₇
	sodium salt	<ul> <li>paper from</li> <li>orange to green</li> </ul>
		orange to green
	a. Name i) Solid V	(1mk)
	ii) Gas W	$(2ml_{ra})$
9.	b. <b>Describe</b> a chemical test for chloride ions Starting with ethanol, describe how a sample of tetrachloroethane can be prepar	(2mks) ed (3mks)
	A solution of bromine in water is a chemical reaction in equilibrium. The reaction	
	represented by the equation below;	
	$\begin{array}{c} Br_{2(aq)} + H_2O_{(l)} & \longleftarrow & 2H^{+(aq)} + Br_{(aq)} + OBr_{(aq)} \\ Yellow & Colourless \end{array}$	
	i) State and explain the observation made when dilute sulphuric (VI) acid is a	idded to the mixture at
	equilibrium.	(2mks)
	ii) <b>Define</b> the term dynamic equilibrium	(1mk)
11.	Apart from downward delivery name another method that can be used to collec	t the following gases (2mks)
	i) Nitrogen (IV) oxide Sulphur(VI) oxide	
	ii) Name one gas that can be dried using anhydrous calcium oxide	(1mk)
	Starting with magnesium metal describe how a sample of magnesium carbonate	(3mks)
13.	With aid of well labelled diagrams show how a sample of sodium chloride, iod separated	(3mks)
14.	Explain the following	(3mks)
	i) Why number of protons and electrons are equal in an atom	
	ii) The role of neutrons in the nucleus of an atom	
15	<ul><li>iii) Cations are positively charged</li><li>(a) In an experiment 10.6g of a mixture of a anhydrous Sodium Carbonate and</li></ul>	Sodium chloride were
15.	dissolved in water to make 100cm ³ of solution .25cm ³ of this solution require Hydrochloric acid solution for complete neutralization.	
	i) <b>Calculate</b> the number of moles of Hydrochloric acid used	(1mk)
	ii) Write a balanced equation for the above reaction.	(1mk)
17	iii) Calculate the mass of Sodium Carbonate in $25 \text{ cm}^3$ of this mixture.	(1mk)
	Briefly <b>describe</b> how caffeine can be extracted from tea leaves. <b>State</b> the two roles of platinized-platinum in a standard hydrogen electrode	(3mks) (2mks)
	<b>Explain</b> the following	(3mks)
	i) Yellow phosphorus is stored under water	()
	ii) Sodium is stored under paraffin oil	
	iii) Lime water and not potassium hydroxide is used to test for carbon(iv) oxide	2



#### **MURANG'A EXTRA COUNTY SCHOOLS EXAMINATION.** Kenya Certificate of Secondary Education 233/2 Chemistry PAPER 2 (Theory) **TIME: 2 HOURS** 1. The graph below represents the trend in melting points of elements in period 3. a) Study it and use it to answer the questions that follow 1800 1600 1400 1200 Victims Point/ 1000 800 600 400 200Ø Na. SI S CI. **Explain** the trend in melting point between Aluminum and Phosphorous. (2 marks) i) ii) Give a reason why Argon has the lowest melting point (1 mark) The table below shows the properties of several elements. Study it and use it to answer the b) questions that follow. Atomic radius (nm) Element Ionic radius (nm) Р 0.136 0.065 0.174 0.099 Q 0.099 0.181 R 0.203 S 0.133 Giving a reason, identify the nonmetal i) (2 marks) Given that, element P and S belong to the same period of the periodic table, identify the element ii) with a lower ionization energy. Explain. (2 marks) An element X forms an ion with the formula $X^{2+}$ . The electronic configuration of the ion is 2.8 c) State the group and period to which element X belongs. (1mark) i) Group ..... Period ..... ii) Draw dot and cross diagram showing bonding when X combines with chlorine (1 mark)**Explain** the following observations; d) Carbon has more than one melting point (1 mark)i) Silicon and phosphorous are in the same period but at room temperature, the oxide of silicon is a ii) solid, while the oxide of sulphur is gaseous (1 mark)2. Determine the oxidation state of the element indicated in brackets (3 marks) a) $MnO_4$ (Mn) i. ii. $K_2 Cr_2 O_7 (Cr)$ iii. $H_3PO_4(P)$

- Below is a list of standard reduction potentials of some elements. Use it to answer the questions that b) follow.  $A^{2+}(aq) + 2e^- \rightarrow A(s)$ +0.34 V  $N^{2+}(aq) + 2e^{-} \rightarrow N(s)$ -0.76 V $G^+(aq) + 2e^- \rightarrow \frac{1}{2} G(s)$ 0.00 V  $Y^{2+}(aq) + 2e^- \rightarrow Y(s)$ +0.88 V $L^{2+}(aq) + 2e^- \rightarrow L(s)$ -2.16 V Identify the strongest reducing agent (1 mark)i) ii) Explain why a solution containing  $A^{2+}$  ions cannot be stored in a container made of metal N (1 mark)iii) The half cells of Y and L were combined to form an electrochemical cell. Draw a well labelled diagram of the cell formed (3 marks) Ι Calculate the e.m.f of the cell formed above Π (1 mark)The diagram below shows the set up used to investigate electrolysis of dilute sulphuric (VI) acid c) solution X Dilute ohuric (VI) i) Identify product X and Y (1 mark)ii) Write an equation for the reaction at the anode (1 mark)iii) Explain what happens to the solution after 2 has sometime (1 mark)Study the diagram below and use it to answer the questions that follow 3. Thermometer etallic container Water Tripod stand Lamp Ethanol During the experiment, the following data was collected a. Volume of water  $400 \text{ cm}^3$ =Initial temperature of water  $23.0^{\circ}$  C = 35.0⁰ C Final temperature of water = Initial mass of lamp and ethanol 99.07 g = Final mass of lamp and ethanol 98.23 g =4.2 kJ Kg⁻¹ K⁻ Specific heat capacity = Calculate the; Temperature change (1 mark)i) Heat change for the reaction (2 marks) ii) iii) Mass of ethanol that reacted (1 mark)
  - Page | 168

(2 marks)

Molar enthalpy of combustion of ethanol (C=12, H=1.0, O=16.0)

iv)







Test	Procedure	Expected observation
1		
2		
3		



#### MURANG'A EXTRA COUNTY SCHOOLS EXAMINATION. Kenya Certificate of Secondary Education

#### 233/3 Chemistry PAPER 3 (PRACTICAL)

- 1. You are provided with;
- solution P, potassium manganate (VII) .
- solution Q, containing 6.3 g/litre of dibasic acid H₂X.nH₂O
- Solution R, containing 4.0 g/litre of Sodium hydroxide solution.

You are required to determine:

- The value of n in H₂X.nH₂O a)
- How the rate of reaction of solution P with solution Q varies with change in temperature. b)

# **Procedure 1**

- Fill the burette with solution Q.
- Pipette 25cm³ of solution R into a conical flask and titrate solution Q with solution R using phenolphthalein indicator.
- Record your results in table I below and repeat the titration two more times and complete the table: Table I. (4mks)

	Ι	II	II
Final burette readings (cm ³ )		0	
Initial burette readings (cm ³⁾ )	, c	0	
Volume of solution Q used (cm ³ )			

- Determine the average volume of solution Q used. a)
- Calculate the concentration of solution R in moles per litre (Na = 23.0, 16.0, H= 1.0) b) (1mk)
- Given that the equation of the reaction taking place and R.F.M of X = 88c)

 $H_{2X(aq)} + 2NaOH_{(aq)} \rightarrow$  Na₂X_(aq) + H₂O_(l)

Calculate:

- The number of moles of the dibasic acid solution Q that reacted  $(1\frac{1}{2}mks)$ i)
- ii) The number of moles of the dibasic acid solution Q in 1000cm³ of solution. (1mk)(1mk)
- iii) The R.F.M of the dibasic acid, hydrated.
- iv) The value of n in the formula of the hydrated acid given that the RFM of X = 88. (O = 16.0, H = 1.0)

(1mk)

 $(1\frac{1}{2}mks)$ 

# Procedure II

- Using a measuring cylinder, place 10cm³ portion of solution P into 5' test tubes placed in a test tube i) rack.
- Clean the measuring cylinder and use it to place  $10.0 \text{ cm}^3$  of solution Q into a boiling tube. ii)
- iii) Insert a thermometer in the solution Q in the boiling tube and place the boiling tube in the water bath to attain a temperature of 50° C.
- iv) Remove the boiling tube from the water bath and place it in a test- tube rack and add the first portion of solution P. and at the same time start the stopwatch.
- Record the time taken for the purple colour and the mixture to decolourise in table II v)
- vi) Repeat the experiment using 10cm³ of solution Q at 50°C, 60°C, 70° C and 80°C.
- vii) Record the time in table II below. Complete the table by computing  $\frac{1}{t}$  sec⁻¹.

Table II				(5	marks)	
Temperature of solution Q (°C)	40	50	60	70	80	]
Time of colour to decolourise (sec )						
$1/t (sec^{-1})$						
<ul> <li>a) Plot a graph of ¹/_t (sec⁻¹) against temper</li> <li>b) From the graph , determine the time takes solution B was 65°C</li> <li>c) How does the rate of reaction of potassit temperature? Explain</li> </ul>	ten for deco			ixture, if the (1 c acid vary)	mk)	re of
<ul><li>2. You are provided with solid V. Carry out the spaces provided.</li><li>a) Strongly heat a spatula – end full of solid V</li></ul>			-			
and red litmus papers.	in a dry te		st any gase	s produced (	using ooth t	5140
Observations			Inferences			
(1mk)				nk)		
(11111)			(11			
<ul> <li>b) i) Place the remaining solid V in a boiling to four portions. To the first portion, add 2-</li> <li>Observations</li> </ul>				ate solution		
(1mk)			Inference	<u>s</u> (1n	ak)	
ii) To the second portion add 2-3 drops of b	orium nitro	ta calutio	fallowed		/	itria
(V) acid.	arium mura	ale solution	ronowed	by about 20	ms anute n	IIIIIC
Observations		<u></u>	Inference	9		
		$\mathcal{R}$				
(1mk)		<u></u>	1mk	/		
ii) To the third portion add a few drops of so	Salum nya	roxide unu				
Observations			Inference			
(1mk)	5	·	4:1 :	<u>(1mk)</u>		
iv) To the fourth portion add few drops of	queous an	nmonia un				
Observations	(1 1)		Inference	S		
(1mk)	(1mk)					
v) To the five portion add few drops of hydr	ochloric a	rid and wa	rm			
Observations			Inference	c		
(½mk)	(½mk	7)	micrence	3		
(72111K)	(72111	<b>x</b> )				
<ul><li>3. You are provided with solid T. Carry out th</li><li>a) Place about a half of solid T on a metal.</li></ul>		•			5.	
Observations			Inference	es		
(1mk)	(1m	k)				
<ul><li>b) Place the remaining solid T in a test tube Divide the solution into three portions.</li></ul>	. Add abor	at 6cm ³ of	distilled w	ater and shal	ke well.	
Observations			Inference	es		
(1mk)	(1m	k)				
i) To about $2 \text{cm}^3$ of the mixture add a smaller		/	hydrogen	carbonate.	1	
Observations			Inference			
(½mk)	(½ml	()				
ii) To about $2 \text{ cm}^3$ of the mixture add two dr		/	Im mangai	nate (VII)		
Observations		ea potassit	Inference			
(1mk)	(1mk	)	micrenet	0		
		J				

# MURANG'A EXTRA COUNTY SCHOOLS EXAMINATION.

Kenya Certificate of Secondary Education

#### 233/3 Chemistry PAPER 3

#### Confidential **Instructions to schools**

In addition to the fittings and apparatus found in a chemistry laboratory each candidate should have:

- 1. About 150  $\text{cm}^3$  of Solution **Q**
- 2. About 150  $\text{cm}^3$  of solution **P**.
- About  $80 \text{ cm}^3 \text{ of solution } \mathbf{R}$ . 3.
- 4. Burette 50ml
- 5. Filter funnel
- 25 cm³ pipette 6.
- 7. Clamp and stand
- 8. White tile
- 9. 2 conical flasks
- 10. 10ml Measuring cylinder
- 11. 6 test tubes
- 12. Boiling tube
- 13. Distilled water
- 14. Thermometer  $-10-110^{\circ}$ c
- 15. A stop watch
- 16. About 1g solid V
- 17. About 1.5g of solid T
- 18. Metallic spatula
- ww.treek.csepastpapers.com 19. About 1g of sodium hydrogen carbonate
- 20. Water bath
- 21. Pipette filter

### Access to

- Phenolphthalein indicator 1.
- 2. Source of heat
- 3.  $2M Pb(NO_3)_{2(aq)}$
- 4. 2M HNO_{3 (aq)}
- 5.  $0.5M Ba(NO_3)_{2 (aq)}$
- 2M Ammonia solution 6.
- 7. 2M NaOH
- Acidified KMnO₄ solution 8.
- 9. 2M HCl (ag)

### NOTES

- Solution Q is 0.05M oxalic acid 1.
- 2. Solution P is 0.01M potassium manganate (vii) solution.
- 3. Solution R is 0.1M sodium hydroxide solution.
- 4. A hot Water bath prepared by placing about 200 cm³ of water in a 250ml beaker.
- 5. Solid V mixture (NH₄)₂SO₄ and Al₂(SO₄)₃ in the ratio 1: 1
- Solid T is maleic acid crystals. 6.
- 7. Acidified KMnO₄ is made by dissolving 3.169 of the solid KMnO₄ in about 500 cm³ of 2M H₂SO₄ acid and diluting to one litre of solution.

# **MUMIAS WEST JOINT EVALUATION TEST, 2023**

Kenya Certificate of Secondary Education

# 233/1

# **CHEMISTRY**

# Paper 1

## (Theory)

# **TIME: 2 HOURS**

A mixture of magnesium powder and copper powder was reacted with dilute hydrochloric acid. The 1. solution was then filtered.

Name:

- (a) (i) The residue (1mk)(ii) The filtrate (1mk)
- (b) Write an ionic equation for the reaction that takes place (1mk)
- Aluminium chloride solution changes the blue litmus paper red. Explain this observation (2mks)
- 2. The diagram below shows the set-up that can be used to prepare and collect oxygen gas. Study it and 3. answer the questions that follow.



- (a) Identify two mistakes from the diagram which must be corrected for one to collect dry oxygen gas (2mks)
- (b) What property of oxygen gas makes it possible to be collected over water?
- (1mk)The table below gives information on four elements by letters K, L, M and N. Study it and answer the 4. questions that follow. The letters do not represent the actual symbol of the elements.

Element	<b>Electron arrangement</b>	Atomic radius (nm)	Ionic radius (nm)
Q	2.8.2	0.136	0.065
R	2.8.7	0.099	0.181
S	2.8.8.1	0.203	0.133
Т	2.8.8.2	0.174	0.099

(1mk)

(2mks)

- (a) Which **two** elements have similar chemical properties? Explain (2mks) (1mk)
- (b) What is the most likely formula of the oxide of R?
- (c) Which element is a non-metal. Explain
- A fixed mass of a gas has a volume of 250cm³ at a temperature of 27^oC and 750mmHg pressure. 5. Calculate the volume the gas would occupy at  $42^{\circ}$ C and 750mmHg pressure. (3mks)
- Zinc metal and Hydrochloric acid react according to the following equation 6.

$$Zn_{(s)} + 2HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$$

1.96g of zinc were reacted with 100cm³ of 0.2M Hydrochloric acid,

(a) Determine the reagent that was not enough





 The following table gives the melting points oxides of elements in period 3. Study it and answer the questions that follow:

Formula of oxide	Na ₂ O	MgO	$Al_2O_3$	SiO ₂	P ₄ O ₁₀	SO ₃
Melting point ( ⁰ C)	1190	3080	2050	1730	560	-73

(i) Explain the difference in the melting point of MgO and  $P_4O_{10}$ 

(2mks)

- (ii) Name the compound in the above table that will dissolve both in dilute hydrochloric acid and dilute sodium hydroxide
   (1mk)
- 22. Study the information in the table below and answer the questions that follow

Bond	Bond energy (KJmol ⁻¹ )
C – H	414
Cl - Cl	244
C - Cl	326
H - Cl	431

Calculate the enthalpy change of the reaction

 $CH_{4(g)} + 2Cl_{2(g)} \longrightarrow CH_2Cl_{2(g)} + 2HCl_{(g)}$ 

- (3mks)
- 23. (a) Urea, (NH₂)₂CO is prepared by the reaction between ammonia and carbon(IV)oxide

$$2\mathrm{NH}_{3(g)}+\mathrm{CO}_{2(g)}\longrightarrow (\mathrm{NH}_2)_2\mathrm{CO}_{(aq)}+\mathrm{H}_2\mathrm{O}_{(l)}$$

In one process, 340kg of ammonia were reacted with excess carbon (IV) oxide. Calculate the moles of urea that were formed. (H = 12.0, N = 14.0, O = 16.0) (2mks) (b) What is the oxidation number of Chromium in  $Cr_2 O_7^{2-7}$ (1mk)24. An element P has a relative atomic mass of 88. When a current of 0.5 amperes was passed through the fused chloride of P for 32 minutes and 10 seconds, 0.44g of P were deposited at the cathode. Determine the charge on an ion of P. (1 farada7) (6500 coulombs) (3mks) 25. In a neutralization experiment 25 cm³ of solution of sodium hydroxide containing 8g per litre was required for complete neutralization of 0.245g of a dibasic acid. Calculate the relative molecular mass of the acid. (Na = 23.0, O = 16, H = 1) (3mks) 26. (i) Name one drying agent for hydrogen chloride (1mk)(ii) State and explain the observation that would be made when hydrogen chloride gas is bubbled into a solution of silver nitrate. (2mks)27. In an experiment to study the properties of concentrated nitric acid, a mixture of the acid and wood charcoal was heated in a boiling tube.

- (a) What observations were made? Explain your answer(2mks)
- (b) Write an equation for the reaction that took place in the boiling tube (1mk)

#### MUMIAS WEST JOINT EVALUATION TEST, 2023 Kenya Certificate of Secondary Education

#### 233/2 Chemistry PAPER 2 (Theory) TIME: 2 HOURS

1. Study the flow chart that follows and answer the questions that follow.



- ii) Write the formula of the compound formed between E and G (1mk)
  iii) How do the first ionization energies of elements C and D compare? Explain. (2mks)
  (iv) The melting point of E and K are 1120°C and -34°C respectively. In terms of structure and bonding, explain why there is a large difference in the melting point of E and K. (2mks)
  (v) Indicate on the grid the position of element L which forms L³⁻ ions with electronic configuration
  - 2.8.8. (1mk) Element L reacts with dilute sulphuric(VDacid at room temperature to produce 0.4dm³ of gas
- (vi) Element J reacts with dilute sulphuric(VI)acid at room temperature to produce 0.4dm³ of gas. Determine the mass of J which was reacted with dilute sulphuric(VI)acid. (molar gas volume at rtp is 24dm³, relative atomic mass of J=27)
   (3mks)
- 3. The graph that follows shows the solubility curves for some three common salts. Study it and answer the questions that follow.



4



Page | 193



## **MUMIAS WEST JOINT EVALUATION TEST, 2023** Kenya Certificate of Secondary Education

233/3 Chemistry (PRACTICAL) Paper 3 TIME: 2¹/₄ HOURS

1. You are provided with:

Sodium hydroxide labeled solution A

0.128M hydrochloric acid labeled solution B

Carboxylic acid labeled solution C

Solution D prepared by diluting 25cm³ of solution A with distilled water to 150cm³ of solution *You are required to:* 

- i) Standardize solution D with solution B
- ii) Determine the ratio between sodium hydroxide, solution A and the carboxylic acid, solution C
- iii) Determine the concentration of C in moles per litre.

# **Procedure 1**

Fill the burette with solution B. Pipette 25cm³ of solution D into 250cm³ conical flask. Add 2 drops of phenolphthalein indicator and titrate with solution B. Record your results in table 1 below. Repeat the titration two more times and complete the table.

Table 1		2	X	(4marks)
	Ι	×Q`	II	III
Final burette reading (cm ³ )		Si		
Initial burette reading (cm ³ )		00		
Volume of solution B used (cm ³ )		<u>Sx</u>		
Determine the average volume of so	lution B us	sed.		(1mark)

- Determine the average volume of solution B used. a)
- Calculate the concentration in moles per litre of sodium hydroxide in : b)
  - i) Solution D
  - Solution A ii)

(2marks)

(2marks)

## **PROCEDURE 2**

Using a clean burette, place 16cm³ of solution C into a boiling tube. Take the initial temperature of the solution in the boiling tube and record it in the table 2. Using a clean measuring cylinder, measure 4cm³ of solution A into 100cm³ beaker and add it to solution C in the boiling tube. Stir the mixture immediately with the thermometer and record in Table 2 the maximum (final) temperature reached. Repeat the experiment with the other set volumes of solution C and A in Table 2 and complete it. *Rinse* 

the thermometer and the boiling t	tube with d	istilled w	vater aft	er each ex	cperiment	•	
Table 2						(6Mai	rks)
Volume of solution C, cm ³	16	12	8	6	4	2	

Volume of solution C, cm ³	16	12	8	6	4	2
Volume of solution A, cm ³	4	8	12	14	16	18
Final temperature ( ^o C)						
Initial temperature ( ^O C)						
Change in temperature,						

- On the grid provided, plot a graph of change in temperature (vertical axes) against the volume of c) sodium hydroxide, solution A
- From the graph, determine the volume of sodium hydroxide solution A required to neutralize the d) carboxylic acid (1mark)

e)	Calculate the volume of carboxylic acid, solution	n C used for neutralization (1mark)								
f)	Calculate the:									
	i) Ratio between the volumes of solution A and	d C (2marks)								
		ic acid, solution C (Assume the volume ratio is the								
	same as the mole ratio) (2marks)									
2.	You are provided with solid E. Carry out the tests below and record your observations and inferences in									
	the spaces provided.									
	Divide E into halves. Place one half of solid E in a clean dry test-tube. Heat it gently then strongly.									
	Observations	Observations     Inferences								
	(1mark)	(1mark)								
	until all the solid dissolves.	e. Add about 10cm ³ of distilled water and shake well um hydroxide drop wise until in excess.								
	Observations	Inferences								
	(1mark)	(1mark)								
	(1.1.1.1)									
		nd add 2 to 3 drops of 2M sulphuric (VI) acid.								
	Observations	Inferences								
	(1mark)	(1mark)								
	iii) To about 1cm ³ of solution, add 4-5 drop	s of lead (10) nitrate solution and heat to boiling.								
	Observations	Inferences								
	(1mark)	(1mark)								
3.	the spaces provided.	s below and record your observations and inferences in t 10cm ³ of distilled water and shake well. Use 2cm ³								
	Observations	Inferences								
	(1mark)	(1mark)								
	b) To the second portion, add three drops of	bromine water								
	Observations	Inferences								
	(1mark)	(1mark)								
		ed potassium manganate (VII) and shake well.								
	Observations	Inferences								
	(1mark)	(1mark)								
	d) Warm the fourth portion slightly and add	a little solid G, sodium hydrogen carbonate.								
	Observations	Inferences								
	(1mark)	(1mark)								

## **MUMIAS WEST JOINT EVALUATION TEST, 2023**

Kenya Certificate of Secondary Education

233/3 Chemistry (PRACTICAL) Paper 3

## CONFIDENTIAL

In addition to the fittings and chemicals found in the Chemistry laboratory, each candidate will require the following:

- Burette  $(0-50 \text{ cm}^3)$ 1.
- 2. Filter funnel
- Pipette 25cm³ 3.
- One pipette filler 4.
- 5. 0.3g of solid G
- Two 250ml conical flasks 6.
- 7. About 120ml of solution A
- 8. About 100ml of solution B
- 9. About 60ml of solution C
- About 100ml of solution **D** 10.
- 11. One 10ml measuring cylinder
- 12. Thermometer  $(-10 - 110^{\circ}C)$
- 100ml plastic beaker 13.
- 14. Two boiling tubes
- One test tube holder 15.
- 2 red and 2 blue litmus papers 16.
- 17. 1g of solid E
- 18. 0.5g of solid F
- 19. 6 clean dry test – tubes
- About 500ml distilled water 20.

Access to the following:

- Kcsepastpapers.com 2.0M sodium hydroxide supplied with a dropper 1.
- 2. 0.5M Lead (II) nitrate supplied with a dropper
- 3. Bunsen burner
- Phenolphthalein indicator supplied with a dropper 4.
- 5. 2M sulphuric (VI) acid
- Bromine water supplied with a dropper 6.
- Acidified potassium manganate (VII) supplied with a dropper 7.

## NOTES AND PREPARATION

- Solution A is made by dissolving 48g of sodium hydroxide in 500cm³ of distilled water and diluting 1. to make one litre.
- Solution **B** is made by dissolving 12cm³ of **concentrated hydrochloric** acid in about 600cm³ of 2. distilled water and diluting it to one litre.
- 3. Solution C is prepared by dissolving 76g of **oxalic acid** in 600cm³ of distilled water and diluting to one litre
- 4. Solution **D** is prepared by dissolving 4g of **sodium hydroxide** in 600cm³ of distilled water and diluting to one litre.
- 5. Solid G is NaHCO₃
- Solid E is calcium chloride 6.
- 7. Solid F is benzoic acid

#### **Instructions to candidates**

- a. Answer ALL the questions.
- b. Mathematical tables and electronic calculators may be used.
- 1. The number of protons, neutrons and electrons in particles A, B and C are given in the table below. The letters are not actual symbols of the elements.

Particle Prot	teins Neu	utrons Ele	ectrons
A 9	10	10	
B 17	18	17	
C 3	4	2	

- a) Select a letter that represents;
  - i. a cation
  - ii. an anion
  - iii. Neutral atom
- b) Give the formula of compound formed when A and C combine.
- 2. Nitrogen (IV) oxide (NO₂) was collected in a transparent gas jar at room temperature. The gas jar was then sealed. An equilibrium was established in the gas jar as represented by the equation below.  $2NO_{2} = N_{2}O_{2} = N_{2}O_{2} = AH = \pm 9.7 k I/ml$

 $(1/_2 \text{ mks})$  $(1/_2 \text{ mks})$ 

 $(1/_2 \text{ mks})$ 

 $(1/_2 \text{ mks})$ 

(1mk)

2NO 
$$_{2(g)} \longrightarrow N_2O_4$$
  
(brown) (ye

$$\longrightarrow \text{N}_2 \cup 4_{(g)} \qquad \qquad \Delta \Pi = \pm 9.7 \text{ KJ/III}$$
(yellow)

State and explain the observation made when the gas jar is lowered in ice cold water.(3mks)3. i. When magnesium is heated strongly in a crucible its mass increases. Explain.(1mk)

- ii. Explain how magnesium is used to prevent rusting of iron by sacrificial protection. 1mk)
- iii. State two differences between rusting and burning.
- **4.** A student carried out chromatography experiment for three substances X, Y and Z. The chromatograms obtained are as follows.



He then measured the boiling points of the three substances and got the following results. One boiled at  $68^{\circ}$ C, the other boiled at  $70^{\circ}$ C –  $72^{\circ}$ C and the third one boiled at  $78^{\circ}$ C –  $85^{\circ}$ C. With explanation give the substances which is likely to have boiled at :-

i.	68°C	(1mk)
ii.	$78^{0}C - 85^{0}C$	(1mk)
iii.	What does chromatogram of Z indicate?	(1mk)
5.	100cm ³ of oxygen diffuse through an opening in 10 seconds while 150cm ³ of unknown gas takes	
	12 seconds. Calculate the molecular mass of gas x. $(O = 16.0)$	(3mks)

6. In a titration experiment 25cm³ of sodium hydroxide solution containing 8.0g per litre was required for complete neutralization of 0.245g of diabasic acid. Calculate the relative molecular mass of the acid. (Na = 23, O = 16, H = 1.0)
 (3mks)







	b) What is a pollutant	r?	d from a car exhaust. diagram to represent the apparatus that can be used	(1mk) (1 mk) l to prepare
ł	hydrogen gas from b) Write a balanced c	a reaction of stea hemical equation	am and metal x that is divalent.	(2 mks (1 mk)
		Relative Molecular may	Boiling point( ⁰ C)	
	Butane	58	-1	
	Butan $-1 - 01$	74	117	
4. S ( 1 3	Study the thermochem $C(s) + O_{2(g)} - \cdots \rightarrow C$ $H_{2(g)} + \frac{1}{2}O_{2(g)} - \cdots \rightarrow \beta$ $SC(s) + 4H_{2(g)} - \cdots \rightarrow \beta$	ical equations below $O_{2(g)} \Delta H^{\theta}_{C} = -39.2$ $H_{2}O_{(g)} \Delta H^{\theta}_{C} = -$ $C_{3}H_{8(g)} \Delta H_{f} = 10$	286kJ/ Mol )3.6kJ/Mol	(2mks)
	Calculate the heat of construints of the figure below			(3mks
	PbS T Pt	po $R$ $Pb(NO$ $R$ $Pb(s)$	KOH(aq)	
	•	PD(s)	Colourless solution W	
i. 1 ii. V v. V 2 <b>6.</b> 7 I	Name process T. Name the substance re Write the formula of co Write the equation for The following equation $r_{(aq)} \longrightarrow r_{(aq)}$ I. PH (aq) $\longrightarrow P^{-1}$	omplex ion present the reaction taking ns show the dissoc $_{(aq)} + H^+ (aq)$ $_{(aq)} + H^+ (aq)$	g place in step P.	( ¹ / ₂ mk ( ¹ / ₂ mk (1 mk) (1 mk)
) (	Which of the two acids Give a reason for your Give a difference betw	answer. een a dilute acid a	and weak acid.	(2 mks (1mk)
ء 8. 1 9. 2	and 99.6% respectively Describe the chemical Study the information Half reactions	y. Calculate the rel tests that would d given in the table	Z and the abundance of the element is 0.34%, 0.06 elative atomic mass of Z. listinguish between C ₃ H ₈ O and C ₂ H ₄ O ₂ . below and answer the questions that follow. Electrode potential EθV	% (2mks (2 mks
(       	$\begin{array}{c} 2^{2^{+}} (aq) + 2e - \\ 2^{+} (aq) + e - \\ 2^{2^{+}} (aq) + 2e - \\ V^{2^{+}} (aq) + 2e - \\ W^{2^{+}} (aq) + 2e - \\ J^{3^{+}} (aq) + e - \\ \end{array}$	$\begin{array}{l} \bullet \qquad Q_{(s)} \\ \bullet \qquad R_{(s)} \\ \bullet \qquad V_{(s)} \\ \bullet \qquad W_{(s)} \\ \bullet \qquad U^{2+}_{(s)} \end{array}$	+0.34 +0.80 -2.87 -0.13 -2.71 +0.68	(2 1
(	Construct an electroch	emical cell that wi	ill produce the largest e.m.f.	(3mk

	IRINYAGA WEST SCHOOL BASED EXAMINATION, 2023	
	33/2 CHEMISTRY	
	APER 2	
	heory	
TI	IME: 2 HOURS	
IN	NSTRUCTIONS TO CANDIDATES	
1.	Answer all questions in the English.	
2.		
3.	. All working must be clearly shown where necessary.	
1.	. a) The grid below shows part of the periodic table. Study it and answer the questions that follow.	
	The letters do not represent the actual symbols of the elements.	
	T U S X	
	<ul> <li>i) State an element that can form an ion with a charge of -2.</li> <li>ii) What type of structure will a chloride of Q have?</li> <li>iii) Explain how the reactivities of V and W compare.</li> <li>iv) Compare the atomic radius of T and S. Explain</li> </ul>	
	i) State an element that can form an ion with a charge of -2. $\binom{1}{21}$	/
	ii) What type of structure will a chloride of Q have? (1/21) iii) Explain how the reactivities of V and W compare. (2m)	· ·
	iv) Compare the atomic radius of T and S. Explain. (2m	· ·
	v) 2.5g of a Q react completely with 1.2dm3 of gas R at s.t.p	1 \
	I.Write a balanced equation for the reaction between Q and R.(1mII.Determine the R.A.M of Q (Molar Volume of a gas at st.p=22.4dm³)(2m	·
	<ul><li>b) Study the information given below and answer the questions that follow.</li></ul>	ĸIJ
	Formula of compoundNaclMgQ12 $Al_2Cl_6$ SiCl_4PCl_5Boiling point ( $^{0}C$ )14701420Sublimes6075	
	Dotting point (°C)         800         710         800         -70         90	
	<ul> <li>i) Why is the fomula of aluminium choride given as Al₂Cl₆ and not AlCl₃. (1m</li> <li>ii) Give a chloride that is a liquid at room temperature. Explain (1m</li> </ul>	·
	iii) Explain the difference in melting point of NaCl and PCl ₅ . (2m	· ·
		,
2.	. Study the flow chart below and answer the questions that follow.	
	CH-CH-CH- Step 1 CH-CHCH Polymerisation Substance T	
	Gas k /Ni Gas k /Ni	
	Liquid D $\sqrt{H_2SO_{4(l)}}$	
	Substance F	
	H+, KMnO _{4(aq)}	
	Product Z $\leftarrow K_2CO_{3(s)}$ CH ₃ CH ₂ COOH NaOH (a) CH ₃ CH ₂ COONa	
	CH ₃ CH ₂ COOK Substance W Gas X	
	CH ₃ CH ₂ COOK Substance W Gas X	
	Y	
	CH ₃ CH ₂ Cl	

a)	Identify		
i)	Substance F	(1/2mk)	
ii)	Liquid D	(1/2mk)	
	Gas Y	$\binom{1}{2}$ mk)	
	Gas X	( ¹ / ₂ mk)	
b)	Name and draw the structure of com b) T	pounds,	(2mks)
	c) X		(2mks) (2mks)
c)	/	dition for changing X to CH ₃ CH ₂ Cl.	(1mk)
	Name the type of reaction that		(TIIK)
	i) Leads to the formation of $CH_3C$ .	H ₂ COOH.	(1mk)
	ii) Leads to the formation of substa		(1mk)
d)	Write an equation that results in form		(1mk)
e)	-	use of substance T to the environment? Explain.	(2mks)
ĺ.		*	
3.	a) The diagram below is part of a s	et up used to prepare and collect dry chlorine gas.	
	Concentrated		
	HCl 🗳	astpapers.com	
		h	
		F G	
		S.	
		C C	
	Manganese (IV) oxide		
	/ Υ		
	i) Complete the diagram to show h	now dry chlorine gas can be collected.	(2mks)
	ii) Name another substance that can	n be used instead of Manganese (IV) oxide.	(1mk)
	ii) Write an equation for the follow	ing	
	I. Chlorine reacting with Iron.		(1mk)
	II. Chlorine reacting with hot c	oncentrated sodium hydroxide solution.	(1mk)
		3g was found to contain 1.12g of oxygen.	
	-	a of the oxide. $(O = 16, Cl = 35.5)$	(3mks)
		ochloric acid name two other uses of chlorine.	(1mk)
		s P and Q were separately added to solutions containing chloride	
	* *	med. To each a few drops of nitric (V) acid were added. The chlori	de compound
		e compound of Q dissolved while that of P did not.	(1 1)
	i) Identify the metal ions of P and		(1mk)
	ii) Write ionic equations for the rea	action that occurred when cations of P and Q reacted with chlorid	
1	a) The set up below was used during	ng electrolysis of aqueous iron (II) sulphate using inert electrodes	(2mks)
4.	a) The set up below was used durin Study it and answer the question		
		77	
		日本にしていた。	
	글라먹는구나	Aqueous Iron (II) Sulphate	
		<u></u>	
1			

	i)	Name a suitable material for the e	lectrodes.						(1mk)	
	ii)	Identify the cations present in the	solution.						(1mk)	
	iii)	On the diagram label the cathode.							(1mk)	
	iv) Write an ionic equation for the reaction that took place at the anode. (1mk)									
	v)	Explain the changes that occurre					hate solu	tion duri		
	.)					- () <b>r</b>			(2mks)	
	b)	The information below is about th	e standard	reduction	notential	ls of four h	alf cells.	Study it		
	0)	answer the questions that follow.								
		unswer the questions that follow.		not repres	ent the de	ituur synno	015 01 1110	erennenn	<i>.</i>	
		Half cell			$\mathbf{E}_{\boldsymbol{\theta}}$	value (V)				
			(aq)			0.54				
						.34 .44				
		$G^{2^+}_{(aq)} + 2e^- \longrightarrow G(s)$	<i>.</i>							
		$H^{2+}_{(aq)} + 2e^{-} \longrightarrow H(e^{-})$	<i>.</i>			0.34				
		$2J^+_{(aq)} + 2e^- \longrightarrow J2($	g)		0.0	)0				
	i)	Identify the strongest reducing ag				~ • • • •			(1mk)	
	ii)	Write the equation for reaction w	hich takes	place whe	en solid (	3 is added	to a solu	ition cont		
									(1mk)	
		Calculate the $E^{\theta}$ value of the react							(1mk)	
	1V)	If element G becomes the reference	e electrod	e calculate	the new	standard e	electrode	potential		
		element H.				0 1	$\mathbf{O}$		(1mk)	
	c)	Calculate the mass of chlorine libe		ng the elec	trolysis c	of molten s	odium cl	iloride w		
		is passed for 4 minutes. $(Cl = 35.5)$	)			.6	•		(2mks)	
-										
5.	a)	Define the following terms.							(1 1)	
		Half-life				Q			(1mk)	
		Nuclear fission	c 1:	, <b>.</b> . ,				0 1	(1mk)	
	b)	The table below gives percentage	of a radioa	active isoto	ope of Bi	smuth that	remains	after dec	aying at different	
		times.			5					
					10	22	20	()	100	
		Time in (min)	0	6	12	22	38	62	100	
		Percentage of Bismuth	100	81	65	46	29	12	3	
			sch.		• •	• • • • • • • • • • • • • • • • • • • •			(21)	
	i)	On a graph paper plot the percenta							(3mks)	
	11)	Using the graph determine the ori	ginal mass	of the Bis	muth Iso	tope given	that the	mass that		
		minutes was 0.16g.	<b>V</b>						(2mks)	
	c)	Radioactive Carbon – 14 decays by	emitting	beta partic	le to form	n N-14, wr	ite a nucl	ear equati	ion for the reaction.	
							(	1mk)		
	d)	State one use of radioactive Isotop	e in:				,	,		
	)		lmk)		ii)	Industry			(1mk)	
			(IIIK)		11)	maasay			(THIK)	
6	<b>A</b>	7	2003	f C	(II)1	1		· · ·		
6.		excess Zinc powder was added to								
		rmometer and the temperature no	ted. The t	emperatur	e rose fr	om 22°C 1	to 28.2°C	and 1.5	bg of Copper was	
	dep	osited.								
a)	Wr	ite ionic equation for the reaction t	nat took pl	ace.					(1mk)	
b)	Wh	y was excess Zinc powder used?	_						(1mk)	
c)		sides the temperature rise state two	other obse	ervations n	nade as th	ne mixture	was stirr	ed.	(2mks)	
d)		ng the information above calculate								
(4)		A.M of copper = $63.5$ , Specific heat		<u> </u>	-				(4mks)	
- >					,				· · · ·	
e)		ng the result of (d) above draw an		•					(2mks)	
f)		nis experiment was repeated using	-		-		•	-	the molar enthalpy	
	of c	lisplacement to compare with one	obtained in	n (d) above	. Explair	1.	(	2mks)		



#### **KIRINYAGA WEST SCHOOL BASED EXAMINATION, 2023** 233/3 **CHEMISTRY** PAPER 3

#### CONFIDENTIAL

In addition to the sittings and apparatus found in a chemistry laboratory, each candidate will require the following;

- $120 \text{ cm}^3$  of solution T.
- 100 cm³ of solution E _
- 100cm³ of solution F
- _ 3 cm of polished magnesium ribbon (labelled solid M)
- 1 label
- 50 ml burette _
- 25 ml pipette
- _ 2 conical flasks
- Thermometer
- White file _
- _ Complete stand
- _
- _
- _
- _
- _

- _
- Lunel. 1 boiling tube. 5 test tubes in a rack. 0.2g of solid sodium hydrogen carbonate (approximate), of the paper. Solid K Solid Q Filter funnel Test tube holder filter paper. fetallic spatula. ource of heat **cess to:** nsen burner. Sodium hydroxide source when the paper. M sodium sulm' A bari-_

- _
- _
- _
- _

- 0.5M barium nitrate solution with a dropper. _
- _ 0.5M lead (ii) nitrate solution with a dropper.
- Acidified potassium manganate (VII) solution with a dropper.
- _ Acidified potassium dichromate (VI) solution with a dropper.
- Phenolphthalein indicator with a dropper.

## **NOTES**

- Solid Q, 1 g zinc chloride 1.
- Solid K, crushed paracetamol (panadol) (0.5g) 2.
- 3. Solution E is 2M hydrochloric acid.
- 4. Solution F is 0.2M sodium hydroxide solution.
- 5. Solution T is 0.15M sodium thiosulphate.
- 6. Solid M is 3 cm polished magnesium ribbon.

#### **Instructions to candidates**

- Answer ALL the questions. a.
- Mathematical tables and electronic calculators may be used. b.
- All working MUST be clearly shown where necessary. C.

#### 1. You are provided with;

- Solution E, containing 2M hydrochloric acid.
- Solution F, containing 0.2M sodium hydroxide.
- Solid M, Magnesium ribbon.
- Solution T, containing 0.15M sodium thiosulphate.

#### You are required to;

- Determine molar heat of reaction between magnesium and hydrochloric acid. i.
- ii. Determine rate of reaction between hydrochloric and sodium thiosulphate.

#### **Procedure 1**

- Place 20cm³ of solution E into 100ml plastic beaker and measure the initial temperature of solution E. i)  $^{0}C$ Initial temperature of solution E  $(1/_2 \text{ mk})$
- ii) Add all the solid M provided to solution E and stir the mixture with a thermometer. Measure the maximum temperature of the solution.  $(1/_2 \text{ mk})$

 $^{0}C.$ Maximum temperature of the solution

- iii) Transfer the resulting solution formed into a 250ml volumetric flask, add distilled water up to the mark. Shake the mixture well and label it as solution G.
- iv) Fill the burette with solution G up to 0.0 cm³ mark. Pipette 25 cm³ of solution F into a clean conical flask and add 2-3 drops of phenolphthalein indicator.
- Titrate solution G against solution F until the pink colour turns colourless. Repeat the titration two more times and v) record the values in table 1 below.

a)	Table 1				(4 mks)
ĺ.	Experiment 🔗	i	ii	iii	
	Final burette reading				
	Initial burette reading				
	Volume of solution G used(cm ³ )				

- b) Calculate the average volume of solution G used. (1 mk)c) Calculate the number of moles of sodium hydroxide solution F used. (1 mk)d) Calculate the number of moles of hydrochloric acid; In the average volume of solution G used. i. (1 mk)ii. In  $250 \text{ cm}^3$  of solution G. (1 mk)iii. In the original  $20 \text{ cm}^3$  of solution E. (1 mk)iv. That reacted with solid M, magnesium. (1 mk)Determine the number of moles of magnesium that reacted with hydrochloric acid, solution E. e) (1 mk)Determine the molar heat of reaction between hydrochloric acid, solution E and solid M, f)
- magnesium. (Specific heat capacity = 4.2J/g/k. density of solution =  $1g/cm^3$ ). (2 mks)

#### **Procedure II**

Draw a cross (X) on a piece of white paper using a blue or black pen. Measure 30cm³ of solution T using a 50 ml measuring cylinder and put it into a 250ml conical flask placed over a white piece of paper drawn above. Measure 10cm³ of hydrochloric acid, solution E using a 10 ml measuring cylinder. Add it to the contents of conical flask, start the stop watch immediately and swirl the mixture. View the cross from the above the mixture in the conical flask. Stop the stop watch when the cross becomes invisible and record the time in the table 2 below. Repeat the above procedure using volumes of solution T, water and solution E as indicated in table 2 below.

a)	Table 2								
	Experiment	Volume of	Volume of	Volume of	Time	Rate = $\frac{1}{time}$	$\frac{1}{e(s^{-1})}$		
		Solution T (cm ³ )	water (cm ³ )	solution E (cm ³ )	(secs)		(3)		
	1 30	0	10		` <i>`</i>				
	2 25	5	10						
	3 20	10	10						
	4 15	15	10						
	5 10	20	10						
	6 5	25	10						
i)	Plot a graph o From the grap I. The rate o II. The time ta III. The time t	f reaction when 18cm ken for x to be invisi aken for x to be invis	al axis) agains 1 ³ of solution T ble when 12cn ible when 3cm	t volume of solution Γ was used. h ³ of solution T was u b ³ of water was used.	T.		(6mks) (3mks) (1 mk) (1 mk) (1 mk)		
<b>2.</b> i.	provided. Plac dissolves.	ded with solid Q. Ca ce the entire solid in ³ of the solution, add <b>ions</b>	a boiling tub	e. Add about 10cm ³	of distilled se until in e	water. Shake			
ii.	(1mk) To about 2cm Observation	³ of the solution, add	3 drops of sod	(1mk) ium sulphate solution Inference					
iii.	(1mk) To about 2cm Observation	³ of the solution, add	3 drops of bar	ium nitrate solution.	S				
iv.	(½ m To about 2cm Observatio	³ of solution, add 3 dr	ops of lead (II	(1 ½ mks nitrate solution and Inference	warm the n	nixture.			
	(1mk)	, s	1001	(1 mk)	(1 mk)				
3.	You are provi	ded with solid K. 😋	ry out the test	s below and write yo	ur observat	ions and infere	nces in the space		
a)	provided. Place half of s Observation	olid K in a clean met	allic spatula ar	nd heat it directly on t		burner flame.			
	the mixture.	aining portion of solic		g tube. Add about 6 c			nake it well. Filte		
i)	To about 2 cm Observation	n ³ of the filtrate in a te on	est tube add so	lid sodium hydrogen Inference		provided.			
ii)	( ½ m To about 2 cm O <u>bservatio</u>	³ of the filtrate in a te	est tube add tw	( ½ mk) o drops of acidified p Inference		nanganate (VII)	solution.		
iii)	(1 mk To about 2 cm <u>Observatio</u>	n ³ of the filtrate in a te	est tube, add 3	(		hromate (VI)	solution.		
	(1 mk	)		(1	$/_{2}$ mk)				

Ke 233 CH Paj TH	ORM IV TRIAL 2 EXAMINATIONS, 2023 enya Certificate of Secondary Education (K.C.S.E) 3/1 HEMISTRY oper 1 HEORY me: 2 Hours	
<u>IN</u> • •	I <u>STRUCTIONS TO CANDIDATES</u> Answer ALL the questions. Mathematical tables and electronic calculators may be used. All working MUST be clearly shown where necessary.	
1.	a) A hydrocarbon consists of 92.3% carbon. Its molecular mass is 26. Calculate it's Molecular for	
2.	<ul> <li>b) Draw the structure of the hydrocarbon.</li> <li>a) Explain why melting point of chlorine gas is greater than that of Argon.</li> <li>b) Using dot(•) and cross (×) to represent electrons draw a diagram to show bonding in carbon (iv)</li> </ul>	(2 marks) (1 mark) (1 mark) ) oxide. (1 mark)
3.	<ul><li>c) In terms of structure and bonding. Explain why Graphite is used as a lubricant.</li><li>a) What is observed when a few drops of phenolphthalein indicator is added to a solution whose p</li></ul>	(1 mark)
4.	b) Write an equation for the reaction between Lead (ii) oxide and dilute Nitric acid. State and explain the observation that would be made when zinc powder is heated with copper (II) of	(1 mark)
5. 6. 7.	solution of hydrogen chloride gas in methylbenzene does not react with manganese (iv) oxide. Explain	(3 marks) ne gas while a (2 marks)
8. 9.	shaking. State and explain the observations made. Magnesium reacts with both dilute and concentrated sulphuric (VI) acid. Write a balanced equation reactions.	(2 marks)
10.	The table below gives the atomic numbers of elements W, X, Y and Z.	
	ElementWXyZAtomic number14171619	
b)		(1 mark) (2 marks)
	$H - C \equiv C - H + H - H \xrightarrow{I} C = $ $H H H$	
12	Use the bond energies below to calculate the enthalpy changes for the above reaction. BOND       ENERGY         H-H       435         C-H       413         C $\equiv$ C       835         C=C       611         . a) Explain the role of common salt in defrosting ice on roads in ice cold countries.	(3 marks) (1 mark)

12. a) Explain the role of common salt in defrosting ice on roads in ice cold countries.b) Explain why the long-term effects of use of common salt is costly to motorists.

13. Given the equation below

 $NH_{3(aq)} + H_2O_{(l)} \longrightarrow NH_{4^+(aq)} + OH_{(aq)}$ Identify the species that acts as; (1 mark)

	i) A base. Explain	(1 mark)
1.4	ii) An acid.	$(\frac{1}{2} \text{ mark})$
14.		(1mark)
	<ul> <li>b) The rate of diffusion of Sulphur (IV) oxide gas through a porous material is 40cm³s⁻¹.</li> <li>Calculate the rate of diffusion of carbon (IV)oxide gas through the same porous material</li> </ul>	
	(S=32, O=16, C=12)	(2 marks)
15	Describe how a solid sample of lead (II) chloride can be prepared using the following reagents: dilu	
15.	dilute hydrochloric acid and lead carbonate	(3 marks)
16	The production of ammonia is given by the equation	(5 marks)
101	$3H2(g) + N_2(g) \longrightarrow 2NH_3(g); \Delta H=-ve$	
	-	(2, 1)
	(i) State and explain the effect of addition of dilute hydrochloride acid on equilibrium.	(2  marks)
17	(ii) Explain the effect of increase in temperature on the yield of ammonia. $Cr_2O_7^{2-} + 14 H^+ (aq) + 6Fe^{2+} \longrightarrow Cr_2^{3+} + 7H_2O(l) + 6Fe^{3+}.$	(2 marks)
1/.	The above equation show a redox reaction $CI_2 + 7H_2O(1) + 0Fe^{-1}$ .	
(a)	Calculate the oxidation state of chromium in $Cr_2O_7^{2-}$	(2 marks)
~ /	What is the role of $H^+$ in the above reaction.	(1  mark)
~ ~	a) Define the standard heat of formation.	(1 mark)
	b) Draw energy cycle diagram to show how the standard heat of formation of ethanol	
	$(C_2H_5OH)$ can be determined from standard heats of combustion of its elements.	(2 marks)
	c) Given that $\Delta H_C(C) = -393$ kJmole ⁻¹ , $\Delta H_C(H_2) = -286$ kJmole ⁻¹ and $\Delta H_C(C_2H_5OH) \rightarrow 1368$ kJmole ⁻¹	¹ .
	Calculate the enthalpy of formation of $C_2H_5OH$ .	(2 marks)
19.	3.78g of a hydrated salt of iron (II) sulphate, FeSO ₄ , in H ₂ O were heated until all the water of crystall	ization was
	driven off. The anhydrous salt left had a mass of 1.52g. Determine the formula of the hydrated salt.	
20	(Fe = 56, S = 32, H = 1, O = 16)	(3 marks)
	A steady current of 0.2 Amperes was passed through molten silver brounde for 80 minutes.	(1 montr)
a) b)	Calculate the quantity of electricity that passed through the set up Calculate the mass of product deposited at the cathode. $(1F = 96500C; Ag = 108, Br = 80)$	(1 mark) (2 marks)
c)	If a sample of cobalt has an activity of 1000 counts per minute, determine the time it would take for	· /
()	decrease to 62.50 if the half-life of the element is 30 minutes	(2 marks)
21.	The apparatus set up below was used to prepare an anhydrous solid P	
	Drying agent M gas Iron wire Solid P	
a) b) 22.	Write an equation for formation of solid P Suppose the gas used in the set up was dry hydrogen chloride gas; what would be the product obtain reaction? Give a reason for your answer. Aluminium is obtained from the ore with the formula $Al_2O_3$ . $2H_2O$ . The ore is first heated and refined to aluminium oxide ( $Al_2O_3$ ). The oxide is then electrolysed to get Aluminium and oxygen gas to another order or descent	(1 mark) to obtain pure
a)	anodes and carbon as cathode. Give the common name of the ore from where aluminium is extracted from.	(½ mark)
a) b)	What would be the importance of heating the ore first before refining it?	(1  mark)
c)	The refined ore has to be dissolved in cryolite first before electrolysis. Why is this necessary?	(1 mark)
d)	Why are the carbon anodes replaced every now and then in the cell for electrolysing aluminium oxide	?
		(1 mark)
23.	<ul> <li>Use the cell representation below to answer the questions that follow</li> <li>V(s) / V³⁺ (aq) //Fe²⁺ (aq) /Fe(s)</li> <li>i) Write the equation for the cell reaction</li> <li>ii) If the E.M.F of the cell is 0.30 volts and the E^θ value for V³⁺aq / V (s) is -0.74V, calculate the E Fe(s)</li> </ul>	(1 mark) $^{\theta}$ of Fe ²⁺ (aq)/ (2 marks)
24.	When 50cm ³ 1M potassium hydroxide was reacted with 50cm ³ of 1M hydrochloric acid, the tempera 8 ^o C. When the same volume of Potassium hydroxide was reacted with 50cm ³ of 1M Pentanoic acid, the rose by 3 ^o C.	ature rose by

i) Give reasons for the above difference in temperature.

(2 marks) (1 mark)

(1 mark)

(1 mark)

ii) Write an equation to show dissociation of pentanoic acid?25. The following is structural formula of polyester.

$$\begin{bmatrix} 0 & 0 \\ 0 & -CH_2 - CH_2 - 0 - C - CH_2 - CH_2$$

- a) Draw the structural formula and name the alkanoic acid and alkanol that react to form the polymer. (2 marks)
- b) Give one use of polyester.
- 26. A heavy metal P was dissolved in dilute nitric acid to form a solution of compound P(NO₃)₂. Portions of the resulting solution were treated as follows:
- a) To the first portion a solution of dilute hydrochloric acid is added, where a white precipitate (S) is formed, which dissolves on warming.
- b) The second portion is treated with two drops of 2M Sodium hydroxide solution where a white precipitate T is formed. The white precipitate dissolved in excess sodium hydroxide to form a colourless solution.
- c) A solution of potassium iodide is added to the third portion where a yellow precipitate (U) is formed.
- d) When the resulting solution is evaporated to dryness and heated strongly a yellow solid (V) is formed and a brown gas (W) and a colourless gas (X) are formed.
  Identify the substances P, S, T, U, V, W.
- 27. The graphs below were drawn when 15g of marble chips in different physical states were reacted with 50cm³ of 2M Hydrochloric acid. They are drawn by measuring the volume of carbon (iv) oxide produced with time.



- a) Which curves corresponds to the reactions involving powdered calcium carbonate and large sized marble chips with the dilute acid?
- (i) Powdered calcium carbonate
   (ii) Large sized calcium carbonate
   (1/2 mark)
   (1/2 mark)
   (1/2 mark)
   (1/2 mark)
   (1/2 mark)
   (1/2 mark)
   (1/2 mark)
- c) Why is curve A very steep at any given point compared to the other curves?

28. Sodium thiosulphate was reacted with dilute hydrochloric acid in a round bottomed flask as shown below. The gas evolved was collected by downward delivery in a gas jar. Dilute hydrochloric acid Cardboard cover moisty filter paper soaked in acidified potassium chromium (vi) solution sodium thiosulphate Write an equation to show the reaction going on in the reaction in vessel. (1 mark)a) State the observation noted on the filter paper. Give a reason for your answer. b) (1 mark) ur. c) Give a reason why the filter paper soaked in the acidified potassium chromium (VI) is used at the top of the flask (1 mark)

Kenya 233/2 CHEM Paper THEO	Certificate IISTRY 2		EXAMIN ondary Edu		· ·								
1. a)			epresents p ot represent						answer th	e questior	ns that follo	ow.	
			_										
	S		1	R	E		x	-	1				
	1					12.		V					
	Q	Z				м	1	1 =					
			-	-			Т						
iv) v)	Which of What nan Give reas Ionic rad Atomic r Give an o Explain.	f the me me is gir sons for ius of Q adius of element	t reactive n tal is the m ven to the f the followi is smaller f Q is greate that does n compound	ost reac amily of ing than tha er than t ot form	tive? I f element of M hat of compo	ents to v I S ounds u	nder ic		d'S	com		(1mark) (1mark) (1mark) 1mark (1mark) (2marks) (1mark)	)
b)			elow and a					ow.				(Timark)	
,	Substa					Α	В		С	D	Ε	F	
	Meltin	ig point	(°C)			801	4		-39	5	-101	1356	
							11						
		g point(		5-1:4)		1410 Poor	44		457	54	-36	2860	
			ductivity (	,	N	Good	Pc Pc		Good Good	Poor Poor	Poor Poor	poor Poor	
i)	Identify a	a substa	nce with:		<u>,                                    </u>	Good	ru	01	0000	1 001	1001		
a) b) ii) iii)	Suggest a Substanc of electri	olecular a reason es A and c currer	structure and why subst	ance B ł t electric	has two curre	o meltin nt in the	g poir liquid	its. state. S	-	_	bstances di	(1mark) (1mark) (1mark) ffer as conduc narks)	tors
2. Stu	uy me no	w chart	below and	answei	ine qu		.11at 10	now.					
	Residue												
		Ore N	Na	DH _(s)		Q	Ste	p (i) ►	Solution	x tep (ii)			
	Molte Alum	en iinium	electro (iv)	lysis	Molt mixtu		<b>▲</b> St	ep (iii)	Al ₂ O ₃				







## CONFIDENTIAL

#### Each candidate requires:

- 1. About 100 ml of solution L- 0.2 M NaOH
- 2. Distilled water in a wash bottle
- 3. Burette
- 4. Pipette and pipette filler
- 5. 2 conical flasks
- 6. 10 ml measuring cylinder
- 7. 250 ml volumetric flask
- 8. Exactly 3.6g of solid P- oxalic acid
- 9. Means of labelling-1 piece
- 10. Test-tube holder
- 11. Thermometer(-10 to 110°C)
- 12. Boiling tube
- 13. 5 Test tubes
- 14. Glass rod
- 15. Aluminium Foil
- 16. Red and Blue litmus papers
- 17. Ethanol labelled Liquid Q
- www.treekcsepastpapers.com 18. Universal indicator and universal chart paper
- 19. Watch glass
- 20. Wooden splint
- 21. Solid Barium Nitrate labelled solid E

## ACCESS TO:

Source of heat. Phenolphthalein indicator. NaOH. Dilute H₂SO₄. Pb(NO₃)₂ Solution. Acidified K₂Cr₂O_{7.}

## FORM IV TRIAL 2 EXAMINATIONS, 2023

Kenya Certificate of Secondary Education (K.C.S.E) 233/3 CHEMISTRY Paper 3

#### **Instructions to Candidates:**

- 1. Answer **ALL** questions.
- 2. You are required to spend the first 15 minutes of the 2 ¹/₄ hours allowed for this Paper reading the whole paper carefully before commencing your work.
- 3. Additional pages must not be inserted.
- **1.** You are provided with;
- $\circ$  3.6 g of solid P in a boiling tube. Solid P is a hydrated dibasic acid with the formulaH₂C₂O₄.nH₂O
- o Solution L which is a 0.2 M sodium hydroxide solution. You are required to
- determine;
- (i) Solubility of solid P
- (ii) The value of n in the formula  $H_2C_2O_4.nH2O$

### **Procedure I**

- I. Using a burette, add 4cm³ of distilled water to solid P in the boiling tube. Heat the mixture while stirring with the thermometer to about 70 °C. When all of solid has dissolved, allow the solution to cool while stirring with the thermometer. Note the temperature at which crystals of solid P first appear. Record the temperature in **table 1** below.
- **II.** Using the burette, add 2 cm³ of distilled water to the contents of the boiling tube. Warm the mixture while stirring with the thermometer until all the solid dissolves again. Allow the mixture to cool while stirring. Note the temperature at which crystals of solid P appears.
- III. Repeat procedure (II) three more times and record the temperatures in table 1. RETAIN the contents of the boiling tube for use in PROCEDURE II.

CABLE 1		
Volume of water in the	Crystallization	Solubility of solid P in g/100 g of
boiling tube (cm ³ )	Crystallization temperature (°C)	water
4		
6	0	
8	K C	
10		
12		
2.		(4mar

(a)	Complete table 1 above by working out the solubility.	(1 mark)	)
<b>(b)</b>	On the graph provided, plot a graph of solubility of solid P against crystallization temperature.	(3marks	;)

- (c) From the graph, determine;
- (i) The solubility of solid P at 50 °C
- (ii) The temperature at which 65 g of solid P would dissolve in 100 g of water

#### **Procedure II**

- (i) Transfer the contents of the boiling tube from **PROCEDURE I** into a clean 250 mlvolumetric flask.
- (ii) Add distilled water up to the mark
- (iii)Label the resulting solution as solution P
- (iv) Fill the burette with solution P
- (v) Pipette 25cm³ of solution L into a conical flask. Add three drops of phenolphthalein indicator
- (vi) Titrate solution P against solution L to an accurate end point. Record your results in table 2 below.

(4 marks)

(1 mark)

(1 mark)

TABLE 2	1	2	3
Final burette reading			
Initial burette reading			
Volume of solution P used (cm ³ )			

<ul><li>a) Calculate Average volume of solution P used.</li><li>b) (i) Moles of solution L used.</li></ul>		(1mark) (1 mark)
(ii) Moles of solution P used.		(1  mark)
(iii)Moles of solution P in 250 cm ³ of solution P		(1 mark)
(iv) The relative formula mass of P.		(1 mark)
c) Determine the value of n in the formula; $H_2C_2O_4.nH_2O$ (	H = 1, C = 12, O = 16)	(2marks)
2. You are provided with solid E. Carry out the experiment spaces provided.	nts below. Write your observations and in	ferences in the
Place all solid E into a boiling tube. Add about 20cm ³ of a tube.	distilled water and shake. Retain the content	s of the boiling
Observations	inferences	
1 mark	1 mark	
Use 2cm ³ of solution E, in a test tube in each experiment	i, ii, iii, iv and v	
i. To experiment i, Add two drops of aqueous Sulphuric vi ad	rid	
Observations	inferences	
	$\widehat{}$	
1 mark	1 mark	
ii. To experiment ii, add NaOH solution drop wise till in exce		
Observations	inferences	
1 mark	1 mark	
iii. To experiment iii, dip a stirring rod into the solution, plac	e the rod in a non-luminous flame.	
Observations	inferences	
(	A Contraction of the second se	
1 mark	1 mark	
iv. To experiment iv, add two drops of lead (ii) nitrate solution	n	
Observations	inferences	
1 mark	1 mark	
v. To experiment v, add a piece of aluminium foil followed b out with litmus papers.	y sodium hydroxide solution and warm. Te	st the gas given
Observations	inferences	
2 marks	1 mark	
3. You are provided with liquid Q. carry out the tests belo	ow. Write your observations and inference	s in the spaces
provided.		
i). To 2 cm ³ of liquid Q in a test tube, add universal indicate		
Observations	inferences	
1 mark	1 mark	
ii). Place 3 drops of liquid Q on a watch glass and ignite.		
Observations	inferences	
1 mark	1 mark	
iii) To 2 am ³ of liquid O in a toot tybe add two on three days	a of acidified not acium dishuamata VI	dwarm
iii). To 2 cm ³ of liquid Q in a test tube , add two or three drop Observations	inferences	u waiiii
1 mark	1 mark	

#### Answer all the questions.

- Describe the non luminous flame of a Bunsen burner and give a reason why it's preferred when heating substances in the laboratory. (3mks)
- 2. The table below gives some properties of gases M and N

GASES	Density	Effect of KOH _(aq)
Μ	Lighter than air	dissolves without reacting
Ν	Heavier than air	Not affected

Describe how one would obtain a sample of gas N from a mixture of gases M and N (2mks)

3. The following results were obtained trying to determine the solubility of copper (II) sulphate in water at 400°C. Mass of empty dish16.8g,

Mass of dish + saturated solution at  $400^{\circ}C = 26.9g$ ,

- Mass of dish + solid CuSO4 after evaporation to dryness = 17.8g.
- Calculate the mass of saturated solution containing 70g of water at  $400^{\circ}$ C. (3mks)

 $(1 \frac{1}{2} \text{ mks})$ 

 $(1 \frac{1}{2} \text{ mks})$ 

(1mark)

(1 mk)

(1 mk)

- 4. Using dots (•) and crosses (×) to represent electrons, draw diagrams to show bonding in;
- (a)  $C_2H_4$  (C=12, H=1)
- (b) Hydroxonium ion  $H_3O^+$  (H=1, O=8)
- 5. Given sodium carbonate solid, lead (II) nitrate solid and water, explain how you can obtain a solid sample of Lead (II) carbonate. 3mks
- 6. Excess magnesium ribbon sample was heated in equal volumes of:
  - i) Pure oxygen gas
  - ii) Air
- a) Why was the mass of the resulting product in (ii) more than in (i)?
- b) Write the equations for the reactions in part (ii) (2marks)
- 7. Aluminium is obtained from its ore, with formula Al₂O₃.2H₂O. The ore is first heated and refined to obtain pure aluminium oxide (Al₂O₃). The oxide is then electrolysed to get Aluminium and Oxygen gas using carbon electrodes
- a) Write the equation that takes place at the anode (1mk)
- b) What would be the importance of heating the ore before electrolysed
- c) Explain why Aluminium is used for making cooking pans yet it is a reactive metal
- Calculate the volume of oxygen produced when 10g of silver nitrate was completely decomposed by heating at s.t.p (Ag =108, N=14, O = 16, Molar gas volume at s.t.p= 22.4dm3)
   (3marks)
- 9. The set-up below was used to investigate the properties of hydrogen gas.







. The table b	Solution	Е	В	D	٨	С	
					A 6	9	
11	рН	3	14	7	0	9	
Identify;	1.1			1 .			(1  1)
		the largest concent	•	•			(1mk)
		the largest concent		ogen ions	•••••	•••••	(1mk)
		t with Zinc (II) ox			1 111 1	.1 1	(1mk)
,	-	observations mad	de when chlo	rine gas is	bubbled	through a s	-
bromic			1 1 1	• .1 1			(2marks)
	-	n for the reaction	-			l.	(1mark)
. Study the I	niormation tabu	lated below to ans	wer the question	ons that Ion	ow		
Melti	ng point	Element	Atomic	c number			
<b>97.8</b>		Р	11				
1441		Q	14				
-42		Х	17				
64		Y	19				
						~	
	lectron arrangen	nent of the			sis.		
(i) Atom of					C		( ½ mark
(ii) Ion of					Si		( ½ mark
Compare the	ne ionic radius o	f V with its atomic	radius Evala				(2manles)
			-	un.			· · · · · · · · · · · · · · · · · · ·
a) Which		g cleaning agent	-	in cleaning	in water	containing	(2marks) nagnesium sulph
a) Which explain	of the followin		-	in cleaning	in water	containing	· · · · ·
explain	of the followin	g cleaning agent	-	in cleaning	in water	containing 1	· · · · ·
explair A: CH	of the followin	g cleaning agent Na ⁺	-	in cleaning	in water	containing 1	· · · · · · · · · · · · · · · · · · ·
explair A: CH B: CH	of the followin I I ³ (CH ² )16COO ⁻ I ³ (CH ² )15OSO ₃	g cleaning agent Na ⁺	below is best	in cleaning	in water	containing	magnesium sulph
explain A: CH B: CH b) Give <b>o</b>	of the followin I ³ (CH ² )16COO ⁻¹ I ³ (CH ² )15OSO ₃ <b>ne</b> advantage of	g cleaning agent Na ⁺ ⁻ Na ⁺	below is best for domesticut	in cleaning	in water	containing i	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b>	of the followin I ³ (CH ² )16COO ⁻¹ I ³ (CH ² )15OSO ₃ <b>ne</b> advantage of	g cleaning agent Na ⁺ ⁻ Na ⁺ using hard water t	below is best for domesticut	in cleaning	in water	containing t	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b>	of the followin I ³ (CH ² )16COO ⁻¹ I ³ (CH ² )15OSO ₃ <b>ne</b> advantage of	g cleaning agent Na ⁺ 'Na ⁺ using hard water f e table below and	below is best for domesticut	in cleaning se. estion that f	in water	containing	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b>	of the followin I ³ (CH ² )16COO ⁻¹ I ³ (CH ² )15OSO ₃ <b>ne</b> advantage of nformation in th	g cleaning agent Na ⁺ 'Na ⁺ using hard water f e table below and	below is best for domestic us answer the que	in cleaning se. estion that f	in water	containing n	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b>	of the followin I ³ (CH ² )16COO ⁻ I ³ (CH ² )15OSO ₃ <b>ne</b> advantage of nformation in th Bond	g cleaning agent Na ⁺ 'Na ⁺ using hard water t e table below and Bond end	below is best for domestic us answer the que	in cleaning se. estion that f	in water	containing t	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b>	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th Bond C-H	g cleaning agent Na ⁺ 'Na ⁺ using hard water t e table below and Bond end	below is best for domestic us answer the que	in cleaning se. estion that f	in water	containing n	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b>	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ ne advantage of nformation in th Bond C-H Cl - Cl C - Cl	g cleaning agent Na ⁺ 'Na ⁺ using hard water f e table below and Bond end 414 244	below is best for domestic us answer the que	in cleaning se. estion that f	in water	containing i	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b>	of the followin $I^{3}(CH^{2})16COO^{-1}$ $I^{3}(CH^{2})15OSO_{3}$ <b>ne</b> advantage of nformation in th Bond C-H Cl – Cl	g cleaning agent Na ⁺ 'Na ⁺ using hard water f e table below and Bond end 414 244 326	below is best for domestic us answer the que	in cleaning se. estion that f	in water	containing	magnesium sulph (2mks)
explain A: CF B: CF b) Give <b>0</b> . Study the i	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ ne advantage of nformation in th Bond C-H Cl - Cl C - Cl H - Cl	g cleaning agent Na ⁺ 'Na ⁺ using hard water f e table below and Bond end 414 244 326 431	below is best for domestic us answer the quo ergy (kJmo1 ⁻¹ )	in cleaning se. estion that f	in water	containing t	magnesium sulph (2mks) (1mk)
explain A: CF B: CF b) Give o . Study the i	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ ne advantage of nformation in th Bond C-H Cl - Cl C - Cl H - Cl he enthalpy char	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 ge of the reaction	below is best for domestic us answer the que	in cleaning se. estion that f	in water	containing f	magnesium sulph (2mks)
explain A: CH B: CH b) Give <b>o</b> . Study the i Calculate t CH _{4(g)} +	of the followin $I^{3}(CH^{2})16COO^{-1}$ $I^{3}(CH^{2})15OSO_{3}$ ne advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl he enthalpy char $Cl_{2(g)}$	g cleaning agent Na ⁺ 'Na ⁺ using hard water f te table below and Bond end 414 244 326 431 using the reaction $ ightarrow CH_3Cl_{(g)} + HC$	below is best for domestic us answer the quo ergy (kJmo1 ⁻¹ )	in cleaning se. estion that f	Gh water ollows.	containing 1	magnesium sulph (2mks) (1mk) (3mks)
explain A: CH B: CH b) Give <b>o</b> . Study the i Calculate t CH _{4(g)} + . In an exper	of the followin $I^{3}(CH^{2})16COO^{-1}$ $I^{3}(CH^{2})15OSO_{3}$ ne advantage of nformation in th Bond C-H Cl - Cl C - Cl H - Cl he enthalpy char $Cl_{2(g)}$	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 ge of the reaction CH ₃ Cl _(g) + HC	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ )	in cleaning se. estion that f	Ch water ollows.	containing 1	(2mks) (2mks) (1mk) (3mks) V was 3860 coulor
explain A: CH B: CH b) Give o . Study the i Calculate t CH _{4(g)} + . In an exper Calculate t	of the followin $I^{3}(CH^{2})16COO^{-1}$ $I^{3}(CH^{2})15OSO_{3}$ ne advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl he enthalpy char $Cl_{2(g)}$	g cleaning agent Na ⁺ 'Na ⁺ using hard water f te table below and Bond end 414 244 326 431 bege of the reaction CH ₃ Cl _(g) + HC ty of electricity pa tal W given that it	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ )	in cleaning se. estion that f	Ch water ollows.	containing 1	magnesium sulph (2mks) (1mk) (3mks)
explain A: CH B: CH b) Give <b>o</b> . Study the i Calculate t CH _{4(g)} + . In an exper Calculate t . Explain wh	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ ne advantage of nformation in th Bond C-H Cl - Cl C - Cl H - Cl he enthalpy char $Cl_{2(g)}$ iment the quanti he charge of method	g cleaning agent Na ⁺ 'Na ⁺ using hard water for table below and Bond end 414 244 326 431 bege of the reaction $CH_3Cl_{(g)} + HC$ ty of electricity particular cal W given that it int of ethanol is hill	below is best for domestious answer the que ergy (kJmo1 ⁻¹ ) ergy (kJmo1 ⁻¹ )	in cleaning se. estion that f	Ch water ollows.	containing 1	(2mks) (2mks) (1mk) (3mks) vas 3860 coulor (3mks)
explain A: CF B: CF b) Give o Study the i Study the i Calculate t CH _{4(g)} + In an exper Calculate t Explain wh (Relative n	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl he enthalpy char $Cl_{2(g)}$ iment the quanti the charge of methods by the boiling po- nolecular mass of	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 See of the reaction ► CH ₃ Cl _(g) + HC ty of electricity pa tal W given that it int of ethanol is his f ethanol is 46 wh	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ )	in cleaning se. estion that f	Gh water ollows. posited 2.4 120. (IF =	4g of metal W 96500C)	(2mks) (2mks) (1mk) (3mks) V was 3860 coulor
explain A: CH B: CH b) Give <b>o</b> . Study the i Calculate t CH _{4(g)} + . In an exper Calculate t . Explain wh (Relative n . Hydrogen s	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ ne advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl he enthalpy char $Cl_{2(g)}$ iment the quanti he charge of methods by the boiling po- nolecular mass of sulphide gas was	g cleaning agent Na ⁺ 'Na ⁺ using hard water f te table below and Bond end 414 244 326 431 using hard water f e table below and CH ₃ Cl _(g) + HC ty of electricity pa tal W given that it int of ethanol is his f ethanol is 46 wh	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ )	in cleaning se. estion that f	Gh water ollows. posited 2.4 120. (IF =	4g of metal W 96500C)	(2mks) (2mks) (1mk) (3mks) V was 3860 coulor (3mks) (2mks)
explain A: CF B: CF b) Give o . Study the i . Study the i . Study the i . In an exper Calculate t . Explain wh (Relative n . Hydrogen a . State the o	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl he enthalpy char $Cl_{2(g)}$ iment the quanti he charge of met by the boiling po nolecular mass of sulphide gas was poservation made	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 See of the reaction ► CH ₃ Cl _(g) + HC ² ty of electricity pa tal W given that it int of ethanol is his f ethanol is 46 wh	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ ) ssed through a 's relative atom gher than that ile that of hexa a solution of z	in cleaning se. estion that f	Gh water ollows. posited 2.4 120. (IF =	4g of metal W 96500C)	magnesium sulph (2mks) (1mk) (3mks) V was 3860 coulor (3mks) (2mks) (1mark)
explain A: CF B: CF b) Give o . Study the i . Study the i Calculate t CH _{4(g)} + . In an exper Calculate t . Explain wh (Relative n . Hydrogen s . State the of Where sho	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th <u>Bond</u> C-H Cl – Cl C – Cl H – Cl the enthalpy char $Cl_{2(g)}$ iment the quanti the charge of met bolecular mass of sulphide gas was poservation made uld the experime	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 we of the reaction ► CH ₃ Cl _(g) + HC ty of electricity pa tal W given that it int of ethanol is hi f ethanol is 46 wh s bubbled through ent be carried out a	below is best for domestious answer the que ergy (kJmo1 ⁻¹ ) (kJmo1 ⁻¹ ) ssed through a 's relative atom igher than that ile that of hexa a solution of z	in cleaning se. estion that f	Gh water ollows. posited 2.4 120. (IF =	4g of metal W 96500C)	magnesium sulph (2mks) (1mk) (3mks) / was 3860 coulor (3mks) (2mks) (1mark) (1mark)
explain A: CF B: CF b) Give <b>o</b> . Study the i Study the i Calculate t CH _{4(g)} + . In an exper Calculate t . Explain wh (Relative n . Hydrogen = State the ol Where sho	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl he enthalpy char $Cl_{2(g)}$ iment the quanti- he charge of method boolecular mass of soluphide gas was poservation made uld the experiment quation of the reference	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 bge of the reaction $CH_3Cl_{(g)} + HCC$ ty of electricity pa tal W given that it int of ethanol is hi f ethanol is 46 wh bubbled through ent be carried out a eaction that occurs	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ ) sed through a 's relative aton igher than that ile that of hexa a solution of z	in cleaning se. estion that f	Gh water ollows. posited 2.4 120. (IF = or some ti	4g of metal W 96500C) me.	(2mks) (2mks) (1mk) (3mks) (3mks) (2mks) (2mks) (1mark) (1mark) (1mark) (1mark)
explain A: CF B: CF b) Give o . Study the i Study the i Calculate t CH _{4(g)} + . In an exper Calculate t . Explain wh (Relative n . Hydrogen = State the of Where sho 0 Write the e . 25cm ³ of 0	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl the enthalpy char $Cl_{2(g)}$ inent the quanti the charge of met hy the boiling po- nolecular mass of sulphide gas was poservation made uld the experimed quation of the re-	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 See of the reaction ► CH ₃ Cl _(g) + HC ty of electricity pa tal W given that it int of ethanol is his f ethanol is 46 wh s bubbled through the carried out a caction that occurs n Hydroxide soluti	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ ) (kJmo1 ⁻¹ ) (kJm	in cleaning se. estion that f	Gh water ollows. Doosited 2.4 120. (IF = or some ti	4g of metal W 96500C) me.	(2mks) (2mks) (1mk) (3mks) (3mks) (2mks) (2mks) (1mark) (1mark) (1mark) (1mark)
explain A: CH B: CH b) Give <b>o</b> . Study the i Study the i Calculate t CH _{4(g)} + . In an exper Calculate t . Explain wh (Relative n . Hydrogen s State the ol Where sho 0 Write the e . 25cm ³ of 0 neutralizati	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl he enthalpy char $Cl_{2(g)}$ iment the quanti- he charge of met by the boiling po- nolecular mass of sulphide gas was poservation made uld the experimed quation of the re- .12M Potassium on. The acid con	g cleaning agent Na ⁺ Na ⁺ using hard water for the table below and Bond end 414 244 326 431 Bond end 414 244 326 431 Bond end 414 244 326 431 Bond end 414 244 326 431 Bond end 414 244 326 431 Bond end 414 244 326 431 Bond end 414 244 326 431 Bond end 414 326 431 Bond end 414 316 Bond end 414 244 316 Bond end 416 Bond end 417 Bond end 418 Bond end 418	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ ) (kJmo1 ⁻¹ ) (kJm	in cleaning se. estion that f	Gh water ollows. Doosited 2.4 120. (IF = or some ti	4g of metal W 96500C) me.	(2mks) (2mks) (1mk) (3mks) (3mks) (2mks) (2mks) (1mark) (1mark) (1mark) (1mark) (1mark) (1mark) (1mark)
explain A: CF B: CF b) Give <b>o</b> . Study the i Study the i Calculate t CH _{4(g)} + . In an exper Calculate t . Explain wh (Relative n . Hydrogen = State the ol Where sho Write the e . 25cm ³ of 0 neutralizati	of the followin $I^3(CH^2)16COO^{-1}$ $I^3(CH^2)15OSO_3$ <b>ne</b> advantage of nformation in th Bond C-H Cl – Cl C – Cl H – Cl the enthalpy char $Cl_{2(g)}$ inent the quanti the charge of met hy the boiling po- nolecular mass of sulphide gas was poservation made uld the experimed quation of the re-	g cleaning agent Na ⁺ Na ⁺ using hard water f e table below and Bond end 414 244 326 431 ge of the reaction ► CH ₃ Cl _(g) + HC ² ty of electricity pa tal W given that it int of ethanol is his f ethanol is 46 wh s bubbled through the carried out a eaction that occurs a Hydroxide solution hained 3.15g per tal lution.	below is best for domestic us answer the que ergy (kJmo1 ⁻¹ ) (kJmo1 ⁻¹ ) (kJm	in cleaning se. estion that f	Gh water ollows. Doosited 2.4 120. (IF = or some ti	4g of metal W 96500C) me.	(2mks) (2mks) (1mk) (3mks) (3mks) (2mks) (2mks) (1mark) (1mark) (1mark) (1mark)



## GATUNDU SOUTH JOINT EXAMINATION, 2023 Kenya Certificate of Secondary Education 233/2 CHEMISTRY PAPER 2 THEORY 2 HOURS

## **INSTRUCTIONS TO CANDIDATES**

- Answer ALL questions.
- Mathematical tables and electronic calculators **may** be used.
- All workings **must** be clearly shown where necessary.
- 1. The flow chart given shows an analysis of mixture K that contains two salts. **Study** it and answerthe question that follows.





Page | 256

(b) State the period to which the element above belong to.

(1mark)



Experiment	2	1	2	3	4	5
Beaker X	Hydrogen peroxide	30	25	20	15	10
	Water (cm ³ )	0	5	10	15	20
Beaker Y	Potassium iodide (cm ³ )	5	5	5	5	5
	Detergent (cm ³ )	5	5	5	5	5
	Food colour (g)	1	1	1	1	1
	Time (T) (seconds)	54	63	82	103	164
	$\frac{l}{Time}$ (sec ⁻¹ )					

(i) Plot a graph of  $\frac{I}{Time}$  (sec⁻¹) (vertical axis) against volume of hydrogen peroxide used. (3 marks)

(ii) From the graph, determine the time the reaction would take if the volume of hydrogen peroxide is28.5cm³. (1 mark )

(iii)How does the concentration of hydrogen peroxide affect its rate of reaction with potassium iodide. (1 mk) (iv)Other than concentration, state two factors that would affect the rate of this reaction. (1 mk)



c) The diagram **below** represents a mercury cell that can be used in the industrial manufacture of sodium hydroxide. Study it and answer the questions that follow:



c) Sodium hexandecanoate (sodium palmate) commonly known as Imperial Leather soap ismanufactured by hydrolysis of palmitic acid using sodium hydroxide as shown.





## **CONFIDENTIAL**

Requirements for each candidate

- 1.  $150 \text{ cm}^3$  of solution A
- 2.  $200 \text{ cm}^3 \text{ of solution B}$
- 3.  $60 \text{ cm}^3$  of solution X
- 4.  $150 \text{ cm}^3$  of solution Z
- 5. Pipette
- 6. Burette
- 7. Thermometer
- 8. Stop watch

- Lineasuring cylinder Lineasuring cylinder

## ACCESS

## NOTES

- a. Solution B 0.04 M acidified KMNO₄
- b. Solution A Ferrous ammonium sulphate (Fe SO₄(NH₄)₂ SO₄ X H₂O made by dissolving 8.5 g in 50 cm³ of 2M H₂SO₄ making it to 250 cm³
- c. Solution X which is prepared by dissolving 75.6 g of glucose in about 500 cm³ of distilled water, then making it up to the liter.
- d. Solution Z, 2 M Sulphuric (vi) acid.

## **GATUNDU SOUTH JOINT EXAMINATIONS, 2023** Kenya Certificate of Secondary Education 233/3 CHEMISTRY Paper 3 PRACTICAL Time: 2 ¹/₄ Hours

#### **Instructions to candidates**

- Answer all the questions
- You are **NOT** allowed to start working with the apparatus for the first 15 minutes of the 2¹/₄ Hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- Mathematical tables and silent electronic calculators may be used.
- All working must clearly be shown where necessary.
- 1. (a) You are provided with;
  - (i) Solution A Ferrous ammonium sulphate (FeSO₄. (NH₄)₂SO₄. XH₂O) containing 8.5g in 250cm³ of solution
  - (ii) Solution B 0.04 M acidified potassium manganite (VII)

You are required to determine the value of X in FeSO₄.(NH₄)₂SO₄. XH₂C

#### **Procedure I**

Fill the burette with solution B. Pipette 25.0cm³ of solution A into a clean conical flask and titrate until the solution turns pink. Record your results in table I below. Repeat the procedure and fill table I

a)

Table I		II	III	
Final burette reading				
Initial burette reading				
Volume of solution B used (cm ³ )				
	· · · · · · · · · · · · · · · · · · ·		14	1

		(4 marks)
b) i)	Calculate the average volume of solution B used	(1 mark)
ii)	The number of moles of solution B in volume in (i) above	(1 mark)
c) G	iven that the reaction is represented by the ionic equation	

 $\longrightarrow Mn^{2+}_{(aq)} + 4H_2O_{(l)}$  $MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5Fe^{2+}_{(aq)}$ Determine:

(i) The number of moles of iron (II) salt solution A in 25.0cm³ of the solution used. (1 mark) (1 marks)

(1 marks)

(1 marks)

- (ii) The concentration of solution A in moles per litre
- (iii) The concentration of solution A in grams per litre
- (iv) The relative formula mass of iron (II) salt
- (v) The value of X in the formula  $FeSO_4$ .(NH₄)₂ SO₄.XH₂O Fe=56, N=14, S=32, O=16 (1 mark)

## **b)** You are provided with

- 2.0 M sulphuric (vi) acid labeled as solution Z
- 0.42 M glucose solution labeled as solution X
- 0.04 M potassium manganate (vii) labeled as solution B

You are required to determine the rate of reaction between aqueous glucose solution and acidified potassium manganate (vii) at different temperatures.

## Procedure

- Using the 10 cm³ measuring cylinder, place 10 cm³ of solution B into the conical flask i)
- ii) Rinse the 10 cm³ measuring cylinder and use it to measure 10 cm³ of solution of solution X. Keep it for step below

- iii) Using the 100cm³ or the 50 cm³ measuring cylinder, measure 25 cm³ of solution Z and add it into the conical flask, containing solution B, Heat the mixture to slightly above 65 ⁰c and then remove it from the heat source.
- iv) Allow the mixture in step 3 to cool to 65°c, then add the 10 cm³ of solution X and immediately start the stop watch.
- v) Stir the mixture and note the time taken for the colour of the mixture to change from purple to colourless. Record the time taken in the table below.
- vi) Rinse the conical flask and the 10 cm³ measuring cylinder and repeat the procedure at temperatures of 60⁰ c,  $55^{\circ}$ c,  $50^{\circ}$ c, and  $45^{\circ}$ c respectively. Record the time taken in the table below in each case.

2.

a) i)

ii)

b)

ii) Complete the table by calculating the rec Temperature of the solutions ⁰ c	65	<u>60</u>	55	50	45	7
Time taken for the purple colour						
to disappear (s)						
^{1/} t sec ⁻						_
						(5mks)
Plot a graph of $1/t$ (y axis) against the t	emperature	at the point y	when the so	olution bec	omes colo	· /
. From the graph	emperature	at the point .	viten tite st			uness (511
) Determine the time that the reaction wou	ld take if th	e temneratur	e at which	the solutio	n hecomes	colourless
52.5°c		e temperatar				(2mks)
) Determine the rate of reaction if the temp	perature at w	which the solu	ition becoi	nes colour	less is $47^{\circ}$	. ,
) Explain the shape of the graph	jointure at v	sinen the solu		e e e e e e e e e e e e e e e e e e e	1035 15 17 0	(1mk)
) Explain the shape of the graph			S.			(TIIIK)
You are provided with solid Q			0			
Carry out the following tests and record your	• observation	ns and inferen	ces in the	spaces pro	vided	
Add about 15 $\text{cm}^3$ of distilled water to solid (				• •		idue
To about 2 cm ³ of the filtrate add ammonia s				ine mutute	und the res	ilule.
Observations		Inferen				
(1 n	nark).			(1 m	arlz)	
To about 2 cm ³ of the filtrate add a few drops		vdrachlaria a	aid	(1 116	aik)	
Observations	s of anute fi	Inferenc				
		Interenc	68			
	nark)				(1 ma	rlz)
(i) Put the residue in a test tube and add abo	,	diluto nitria	(v) agid an	1 wait for	(	,
To 2 cm ³ of the solution add 2 to 3 drops			v) acid allo	i walt lol a	about five i	minutes
Observations		Inferenc	22			
Observations		Interenc	es			
(1 -	<b>1</b> -)				(1	\
(1 n				(1 mark)	)	
ii) To 2 cm ³ of the solution add ammonia so	fution drop					
Observations		Inference	es			
					(1) 1	、 、
(1 m				(1) mark	x)	
iii). To $2 \text{ cm}^3$ of the solution add $2 \text{ to } 3 \text{ drops}$	s of potassiu					
Observations		Inference	s			
(1 mar	• `				(1 m	

3.		are provided with organic solid M, Carry out the tests	below. Write your observations and inferences in the
	-	es provided	
a)	Plac	e half of solid M in a clean metallic spatula and ignite	
		Observations	Inferences
		$(^{1}/_{2} \text{ mark})$	½ mark)
b)	Plac	e the remaining portions of solid M in a boiling tube a	dd 10 cm ³ of distilled water, filter, divide the filtrate into
		e portions.	
i)	To t	he first portion add 2 to 3 drops of acidified potassium	
		Observations	Inferences
		(1 mark)	(1 mark)
ii)	To t	he second portion add 2 to 3 drops of bromine water	
		Observations	Inferences
		(1 mark)	(1 mark)
iii)	To t	he third portion add 2 to 3 drops of acidified potassium	
, i i		Observations	Inferences
		(1 mark)	(1 mark) con (1 mark)
			$\sim$
			S
			xO
			5
		o X	
		S	
		NC S	
		www.treeke	
		N.	
		1	

## **INSTRUCTIONS TO CANDIDATES**

- 1. Answer **ALL** the questions.
- 2. KNEC Mathematical tables and silent non-programmable electronic calculators may be used.
- 3. All working MUST be clearly shown where necessary
- 1. (a) Explain the condensation process using the kinetic theory of matter. (1mk)
  - (b) Name one chemistry laboratory apparatus that can be used to measure accurate volume of a solution

(1mk)

2. Study the flow chart below and answer the questions that follow:



(b) An element P has a mass number of 35 and atomic number 17.Draw a diagram showing the Composit electrons and the composition of the nucleus of its atom. (2mks) The table below shows properties of some elements P, Q, R and S which belong to the same period of the period. The letters are not the actual symbols of the elements. $\boxed{Element}  P  Q  R  S  MP (^{\circ}C)  1410  98  -101  660  MOR conductor  Good  Non conductor  Carks \\ Select the metallic element which is the better conductor of electricity. Give a reason. (2mks \\ Starting with copper describe how a pure sample of copper (II) carbonar can be prepared. (3mks \\ Study the setup below and answer the questions that follow: \\ \hline Vrite an equation for the reaction between animonia and copper (II) Oxide  (Imk) \\ During the experiment the colour of the contents in the water trough changed .State the colour observed an explanation. (2mks a) Define the molar heat of displacement (Imk) \\ D The following ionic equation represents the reaction between metal Z and aqueous Y^{2^+} Z_{(n)} \longrightarrow Z^{2^+}(n_0) \longrightarrow Z^{2^+}(n_0$	electrons and the comp The table below shows pro	osition of the nucl		-	
table. The letters are not the actual symbols of the elements.         Element       P       Q       R       S         M.P. (*C)       1410       98       -101       660         Atomic Radius       0.117       0.186       0.099       0.143         Electrical conductivity       P00v       Good       Non conductor       Good         Arrange the elements in the order they would appear in the period. Give reasons       (2mks         Select the metallic element which is the better conductor of electricity. Give a teason.       (2mks         Starting with copper describe how a pure sample of copper (II) carbonate can be prepared.       (3mks         Study the setup below and answer the questions that follow:       (3mks         Virite an equation for the contents in the water trough changed .State the colour observed an an explanation.       (2mks         a) Define the molar heat of displacement       (1mk)         b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2^+}$ $Z_{(m)} + Y^{2^+}(m) \longrightarrow Z^{2^+}(m) \longrightarrow \Delta H - VE$ Davine is electrolysed using graphite as electrodes. State the products formed at       (2mks         a) Why is graphite preferred for use as a non-greasy lubricant       (2mks         a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).       (1mk)         a) Sulphur (IV) O	_	perties of some el			
ElementPQRSM.P (°C)141098-101660Atomic Radius0.1170.1860.0990.143Electrical conductivityP00vGoodNon conductorGoodArrange the elements in the order they would appear in the period. Give reasons(2mksSelect the metallic element which is the better conductor of electricity. Give a reason.(2mksSelect the metallic element which is the better conductor of electricity. Give a reason.(3mksStarting with copper describe how a pure sample of copper (II) carbonare can be prepared.(3mksStudy the setup below and answer the questions that follow:Copper (II) Oxide(1mk)Unring the experiment the colour of the contents in the water trough changed. State the colour observed an an explanation.(2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ Z ₀ + $Y^{2+}(w)$ $\longrightarrow Z^{2+}(w) + Y^{0}(w)$ $\land H^{-}-VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mksa) Nonde(1mk)b) Brine is electrolysed using graphite as electrodes. State the products formed ati) Anode(1mk)i) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).State and Explain the observation made.(2mks	table. The fetters are not th	-		I S which belong to the	e same period of the p
M.P (*C)141098-101660Atomic Radius0.1170.1860.0990.143Electrical conductivityP00vGoodNon conductorGoodArrange the elements in the order they would appear in the period. Give reasons(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(2mks Select the metallic element which is the better conductor of electricity. Give a reason.(3mks Select the metallic element which is the questions that follow:Vorper (II) Oxide(Imk) TotalWrite an equation for the reaction between ammonia and copper (II) Oxide(Imk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mks 					
Atomic Radius0.1170.1860.0990.143Electrical conductivityP00vGoodNon conductorGoodArrange the elements in the order they would appear in the period. Give reasons(2mksSelect the metallic element which is the better conductor of electricity. Give a reason.(2mksDistinguish between polar substances and non-polar substances(1mk)Starting with copper describe how a pure sample of copper (II) carbonate can be prepared.(3mksStudy the setup below and answer the questions that follow:Copper (II) OxideCopper (II) Oxidewater +few dropsIteatIteatIteatIteatIteatIteatIteatCopper (II) OxideIteatCanksStarting the experiment the colour of the contents in the water trough changed .State the colour observed an an an explanation.a) Define the molar heat of displacement(1mk)b) The following ionic equation to represent the reaction between metal Z and aqueous Y ²⁺ Z(e) + Y ²⁺ (an) $Z^{2+}(an) + Y_{0}$ $\Delta H = -VE$ Draw an energy level diagram to represent the reactiona) Why is graphite preferred for use as a non-greasy lubricant(2mksa) Brine is electrolysed using graphite as electrodes .State the products formed at i) Ande(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks					
Electrical conductivityP00vGoodNon conductorGoodArrange the elements in the order they would appear in the period. Give reasons(2mks (2mks Select the metallic element which is the better conductor of electricity. Give a teason. (2mks Starting with copper describe how a pure sample of copper (II) carbonate can be prepared.(3mks (3mks Study the setup below and answer the questions that follow: Copper (II) Oxide I leat(3mks (3mks (3mks)Write an equation for the reaction between ammonia and copper (II) Oxide(1mk) Oxide(1mk) (1mk)Write an equation for the reaction between ammonia and copper (II) Oxide(1mk) (1mk)Define the molar heat of displacement b) The following ionic equation represents the reaction between metal Z and aqueous Y ²⁺ Z(a) + Y ²⁺ (aq) - Z ²⁺⁺ (aq) + Y(a) (ap) + Y(a) (b) Write selectrolysed using graphite as electrodes. State the products formed at (1mk)a) Why is graphite preferred for use as a non-greasy lubricant (2mks (2mks)(2mks (2mks) (2mks)a) Why is graphite preferred for use as a non-greasy lubricant (2mks)(2mks) (2mks) (2mks)a) Why is graphite preferred for use as a non-greasy lubricant (2mks)(2mks) (2mks)a) Why is graphite preferred for use as a non-greasy lubricant (2mks)(2mks) (2mks)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks)					
Arrange the elements in the order they would appear in the period. Give reasons (2mks Select the metallic element which is the better conductor of electricity. Give a reason. (2mks Distinguish between polar substances and non-polar substances (1mk) Starting with copper describe how a pure sample of copper (II) carbonar can be prepared. (3mks Study the setup below and answer the questions that follow: Copper (II) Oxide Gas (1000) Iteat (1000) Write an equation for the reaction between ammonia and copper (II) Oxide (1mk) During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mks a) Define the molar heat of displacement (1mk) DThe following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(n)} + Y^{2+}(a_{(n)}) \longrightarrow Z^{2+}(a_{(n)} + Y_{(n)}) \land H = -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant (2mks b) The following using graphite as electrodes .State the products formed at i) Anode (1mk) B) The displacement (2mks a) May is graphite preferred for use as a non-greasy lubricant (2mks b) The displace dusing graphite as electrodes .State the products formed at i) Anode (1mk) B) State and Explain the observation made. (2mks					
Select the metallic element which is the better conductor of electricity. Give a reason. (2mks Distinguish between polar substances and non-polar substances (1mk) Starting with copper describe how a pure sample of copper (II) carbonare can be prepared. (3mks Study the setup below and answer the questions that follow: Copper (II) Oxide Gas ammonia Copper (II) Oxide (1mk) Write an equation for the eaction between ammonia and copper (II) Oxide Uring the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mks a) Define the molar heat of displacement b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \qquad \Delta H = -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode i) Anode	Electrical conductivity		000u		
Select the metallic element which is the better conductor of electricity. Give a reason. (2mks Distinguish between polar substances and non-polar substances (1mk) Starting with copper describe how a pure sample of copper (II) carbonare can be prepared. (3mks Study the setup below and answer the questions that follow: Copper (II) Oxide Gas ammonia Copper (II) Oxide (1mk) Write an equation for the reaction between ammonia and copper (II) Oxide Uring the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mks a) Define the molar heat of displacement b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}(aq) \longrightarrow Z^{2+}(aq) + Y_{(s)} \qquad \Delta H = -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant (2mks a) My is graphite preferred for use as a non-greasy lubricant (2mks a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made. (2mks	Arrange the elements in the	e order they would	l appear in the perio	od. Give reasons	(2mk
Distinguish between polar substances and non-polar substances (1mk) Starting with copper describe how a pure sample of copper (II) carbonars can be prepared. (3mks Study the setup below and answer the questions that follow: Copper (II) Oxide ammonia Gas Gas Write an equation for the reaction between ammonia and copper (II) Oxide (1mk) During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mks a) Define the molar heat of displacement (1mk) b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}(sq) \longrightarrow Z^{2+}(sq) + Y(s) \land A H = -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant (2mk) b) This celectrolysed using graphite as electrodes .State the products formed at i) Anode (1mk) Cathode (1mk) State and Explain the observation made. (2mks	-	•	•• •		
Starting with copper describe how a pure sample of copper (II) carbonate can be prepared. (3mks Study the setup below and answer the questions that follow: Copper (II) Oxide ammonia Gas ammonia Gas ammonia Gas water +few drops universal indicator Write an equation for the reaction between ammonia and copper (II) Oxide (1mk) During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mks a) Define the molar heat of displacement (1mk) b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}(aq) \longrightarrow Z^{2+}(aq) + Y_{(s)} \land H = -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant (2mks a) My is graphite preferred for use as a non-greasy lubricant (2mkk) b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk) a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made. (2mks				sS.	,
Study the setup below and answer the questions that follow: Copper (II) Oxide ammonia Gas ammonia Gas The at the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mks a) Define the molar heat of displacement (11) Oxide (1mk) During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mks a) Define the molar heat of displacement (11mk) b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \qquad \Delta H = -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant (2mk) b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk) ii) Cathode (1mk) a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made. (2mks)			-	carbonate can be prepa	,
Copper (II) OxideammoniaGasammoniaImage: Copper (II) OxideWrite an equation for the reaction between ammonia and copper (II) Oxide(1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mks)a)Define the molar heat of displacement(1mk)b)The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}(_{sq}) \longrightarrow Z^{2+}(_{sq}) + Y_{(s)} \qquad \Delta H = -VE$ Draw an energy level diagram to represent the reaction(2mks)a)Why is graphite preferred for use as a non-greasy lubricant(2mk)b)Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)i)Ande(1mk)a)Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks)		-	· ·		(•
$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	· ·	-	ons that follow.	∧Y	
ammoniawater +few dropsuniversal indicatorWrite an equation for the reaction between ammonia and copper (II) Oxide (1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \land A H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk)(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks	Copper (I	I) Oxide			
ammoniawater +few dropsuniversal indicatorWrite an equation for the reaction between ammonia and copper (II) Oxide (1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \land A H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk)(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks					
ammoniawater +few dropsuniversal indicatorWrite an equation for the reaction between ammonia and copper (II) Oxide (1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \land A H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk)(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks					
ammoniawater +few dropsuniversal indicatorWrite an equation for the reaction between ammonia and copper (II) Oxide (1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \land A H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk)(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks					
ammoniawater +few dropsuniversal indicatorWrite an equation for the reaction between ammonia and copper (II) Oxide (1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation. (2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \land A H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk)(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks		- III - III	グ		
water +few drops universal indicatorWrite an equation for the experiment the colour between ammonia and copper (II) Oxide(1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \qquad \Delta H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks		1-		G G	as
water +few drops universal indicatorWrite an equation for the experiment the colour between ammonia and copper (II) Oxide(1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \qquad \Delta H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks		~ _			
IteatIniversal indicatorWrite an equation for the reaction between ammonia and copper (II) Oxide(1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}(aq) \longrightarrow Z^{2+}(aq) + Y_{(s)} \land H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks	ammonia	• {			
IteatIniversal indicatorWrite an equation for the reaction between ammonia and copper (II) Oxide(1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)}  \Delta H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks		╈═┽───┐┤╯	<u> </u>		
Write an equation for the reaction between ammonia and copper (II) Oxide(1mk)During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mksa) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \land H = -VE$ Draw an energy level diagram to represent the reaction(2mksa) Why is graphite preferred for use as a non-greasy lubricant(2mks)b) Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks)					•
During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mks)a) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)}  \Delta H = -VE$ Draw an energy level diagram to represent the reaction(2mks)a) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks)	•				cisal indicator
During the experiment the colour of the contents in the water trough changed .State the colour observed an an explanation.(2mks)a) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)}  \Delta H = -VE$ Draw an energy level diagram to represent the reaction(2mks)a) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made.(2mks)					
an explanation.(2mks)a) Define the molar heat of displacement(1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ (1mk)b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ (2mks) $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)}  \Delta H^{=} -VE$ (2mks)Draw an energy level diagram to represent the reaction(2mks)a) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)ii) Anode(1mk)iii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).(2mks)State and Explain the observation made.(2mks)	Write an equation for the	eaction between	ammonia and copp	er (II) Oxide	(1mk
a) Define the molar heat of displacement (1mk) b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \qquad \Delta H = -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant (2mk) b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk) ii) Cathode (1mk) a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made. (2mks)	During the experiment the	colour of the cont	tents in the water t	rough changed .State t	he colour observed a
b) The following ionic equation represents the reaction between metal Z and aqueous $Y^{2+}$ $Z_{(s)} + Y^{2+}_{(aq)} \longrightarrow Z^{2+}_{(aq)} + Y_{(s)} \qquad \Delta H= -VE$ Draw an energy level diagram to represent the reaction (2mks a) Why is graphite preferred for use as a non-greasy lubricant (2mk) b) Brine is electrolysed using graphite as electrodes .State the products formed at i) Anode (1mk) ii) Cathode (1mk) a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made. (2mks)	an explanation.				(2mk
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a) Define the molar heat	of displacement			(1mk
Draw an energy level diagram to represent the reaction(2mks)a) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).(2mks)State and Explain the observation made.(2mks)	b) The following ionic eq	uation represents	the reaction betwee	n metal Z and aqueous	$ m sY^{2+}$
Draw an energy level diagram to represent the reaction(2mks)a) Why is graphite preferred for use as a non-greasy lubricant(2mk)b) Brine is electrolysed using graphite as electrodes .State the products formed at(1mk)i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).(2mks)State and Explain the observation made.(2mks)	$Z_{(s)} + Y^{2+}_{(aq)}$	$\rightarrow$ $Z^{2+}_{(aq)} + Y_{(s)}$	$\Delta$ H= -VI	Ξ	
<ul> <li>a) Why is graphite preferred for use as a non-greasy lubricant (2mk)</li> <li>b) Brine is electrolysed using graphite as electrodes .State the products formed at</li> <li>i) Anode (1mk)</li> <li>ii) Cathode (1mk)</li> <li>a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).</li> <li>State and Explain the observation made. (2mks)</li> </ul>	Draw an energy level of	liagram to represe	nt the reaction		(2mk
<ul> <li>b) Brine is electrolysed using graphite as electrodes .State the products formed at <ul> <li>i) Anode</li> <li>ii) Cathode</li> <li>(1mk)</li> </ul> </li> <li>a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). <ul> <li>State and Explain the observation made.</li> <li>(2mks)</li> </ul> </li> </ul>		• •			
i) Anode(1mk)ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).(2mks)State and Explain the observation made.(2mks)				products formed at	
ii) Cathode(1mk)a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII).(2mks)State and Explain the observation made.(2mks)	b) Brine is electrolysed up	00		<b>w</b>	(1mk
a) Sulphur (IV) Oxide is bubbled through acidified Potassium Manganate (VII). State and Explain the observation made. (2mks)	· •				(initial second s
State and Explain the observation made. (2mks	i) Anode				(1mk
	<ul><li>i) Anode</li><li>ii) Cathode</li></ul>	hubbled through a	cidified Dotoccium	Manganata (VII)	(1mk
b) what is meant by vulcanisation? (1mk)	<ul><li>i) Anode</li><li>ii) Cathode</li><li>a) Sulphur (IV) Oxide is</li></ul>	-	cidified Potassium	Manganate (VII).	
	<ul> <li>i) Anode</li> <li>ii) Cathode</li> <li>a) Sulphur (IV) Oxide is State and Explain the operation of the second se</li></ul>	observation made.	cidified Potassium	Manganate (VII).	(2mk
b) State and explain what would happen if a dry red litmus paper was dropped in a gas jar of dry chlorine.	<ul> <li>i) Anode</li> <li>ii) Cathode</li> <li>a) Sulphur (IV) Oxide is State and Explain the o</li> <li>b) What is meant by vulct</li> <li>a) Other than the manufactoria</li> </ul>	bservation made. anisation? cture of weed kille	ers, Name <b>two</b> othe	r uses of chlorine	(2mk (1mk (1mk

(1mk)

(1mk)

a) Write the equation for the reaction that takes place

b) Name one common use of carbon (II) Oxide and Hydrogen gas.



c)	Write a balancing Equation for step II	(1mk)
27.	When an aqueous solution of compound W was mixed with a few drops of Bromine water, the colour	of the mixture
	remained yellow. When another portion of W was reacted with acidified potassium dichromate (V	T), the colour
	of the mixture changed from orange to green.	
a)	What conclusion can be made from the use of	
i)	Bromine water?	(1mk)
ii)	Acidified potassium dichromate (VI)	(1mk)
d)	Solution W was reacted with a piece of a metal and a colourless gas was produced. Describe a simp	ole experiment
	to identify the gas.	(1mk)
28.	An element P contains two isotopes ${}^{16}_{8}Pand{}^{18}_{8}P$ whose relative abundance is in the ratio 9:1.	
	Find the relative atomic mass of P.	(2 marks)

www.treekcsepastpapers.com

## **INSTRUCTIONS TO CANDIDATES**

1. Answer ALL the questions.

2. KNEC Mathematical tables and silent non-programmable electronic calculators may be used.

3. All working **MUST** be clearly shown where necessary

1. Study the figure below and answer the questions that follow



3) In an experiment to study the reactions between German silver (an alloy of Nickel, Zinc and Copper) and excess sulphuric (VI) acid, the data below was recorded. It showed the volume of gas collected after every one minute. Use it to answer the questions that follow.

		T	1	1		1	1		T	<b></b>
	Time (minutes)	0	1	2	3	4	5	6	7	8
	Total volume of gas (cm ³ )	0	110	205	270	310	330	340	340	340
a)	Plot a graph of total volume of		-			-				(3mrks)
b)	Use the graph to determine the	volume	of gas p	roduced	at the en	d of $3\frac{1}{2}$	minutes			(1mrk)
c)	Explain why some solid remained at the end of the experiment (2mrks)									
d)	Determine the rate of reaction between the $3^{rd}$ and the $4^{th}$ minute (2mrks)									
e)	Study the equation below and a		ne questi	ons that	follow					
•,	$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)} $		. 1.1 . 0	1 1	(171)		1 т	1	· 1	.1 .
i)	After decreasing the temperatu	are, the	yield of	sulphur	(VI) 0X1	de increa	ased. Is 1	the react	tion abov	
ii)	endothermic? Explain. State the effect of decreasing p	ressure	on the no	sition of	fequilibr	ium to th	ne vield (	of sul <del>n</del> hi	ır (vi) ov	(2mrks)
f)	i) List one factor that does no		-		-		•	-	. ,	. ,
1)	1) List one factor that does it	or uncer	une posie		quinoriu				i inci cub	(1mrk)
	ii) Define a dynamic equilibri	um						$\langle \rangle$		(1mrk)
							C.	<b>J</b> *		
4.	The following is information f	or the pr	eparation	n of cop	per (ll) s	ulphate	crystals.	An exce	ss of co	oper carbonate
	added to 50.0cm3 of 2M sulpl	huric (V	I) acid in	n a beak	er and th	ne mixtu	re warm	ed until	no furth	er reaction tak
	place. The warm mixture is the				-		ntil the v	volume r	reduced	to 20.0cm3. T
	mixture is allowed to cool and	•		ed dried	and wei	ghed.				
a)	Write the ionic equation for the				X	2				(1  mrk)
b)	Give reason for adding excess	* *	arbonate	;	$\sim$	•				(1 mrk)
c) d)	Give reasons for warming the r How does one determine the er		roaction	S	50					(1mark) (1mrk)
u) e)	Why is it necessary to filter the				e end of	reaction				(1mk) (1mrk)
c) f)	It is advisable not to evaporate									(2 mrks)
g)	Determine the mass of anhydro					Cusons				(3mrks)
8)	(CU=64, S=32, O=16, H=1)	11	20	1						(- )
h)	Give reasons as to why crystals	s of Leac	l(II) sulp	phate are	e not prep	pared usi	ng lead o	carbonat	e and Su	lphuric (VI) a
	as outlined in the experiment a	bove							(2m	rks)
	1.									
5.	The diagram below represents a						n be use	d in the	industria	l manufacture
	sodium hydroxide. Study it and	1 answer	the ques	stions the	at follow					
	Cl ₂ (g) out									
	1 <b></b>			-+						
		+	$\vdash$	_		H ₂ (g) ou				
						4				
	The start	1		Na Na	in Hg(l)	11				
		11	-							
			-	-		2				
	t    -			NaOH(a		1	Sec. 15			
	1		NaC		100			— Dec	omposer	
	1		oı	ıt	1	;				
1		—Hg(l)				•	2.	← 2		
		(				100				
1		-								
		Pu	mp							







7. The table below represents part of the periodic table. The letters do not represent the actual symbols of the elements. Study it and answer the questions that follow:

S								
3		_					Р	
	Z	_	Т			D	0	
	C L	_	1			D	Q	
X	J	_					R	
Го wł	nich family do	element P, Q	and <b>R</b> belon	g?				(
	the electronic	-						(
	are melting p			[				(
	the most read		element					(
	one use of eler							(
	are the atomic	radius of ele	ment Z and J					(
		ion $\mathbf{B}^{3-}$ with	electron arran	igement of 2.8	8.8. Place i	t on the per	iodic grid above	(
	the formula o in the trend of	f the compound	nd formed wh	ien elements 2	X and D rea	act	$\sim$	(
			ment Z and J electron arran nd formed wh element Z, C	sepa	ir an			
			et					

## **KIGUMO CLUSTER EXAMINATION, 2023** Kenya Certificate of Secondary Education (KCSE) 233/3 **CHEMISTRY** PAPER 3

## **CONFIDENTIAL**

#### **Requirements to Candidates**

In addition to the fittings and apparatus found in a chemistry laboratory, each candidate will require.

- 1. Solid A (4.8 g of oxalic acid in a boiling tube)
- **2.** 100cm³ solution B (0.2M NaOH)
- 3. Thermometer  $(-10^{\circ}C 110^{\circ}C)$
- 4. One 50ml burette
- 5. Filter funnel
- 6. Pipette and pipette filler
- 7. One label
- **8.** 250ml volumetric flask
- 9. Two 250ml conical flasks
- **10.** About 300cm³ of distilled water
- 11. Bunsen burner
- **12.** 0.5g of solid F(maleic acid)
- 13. 0.5g of solid V iron iii sulphate
- **14.** 6 test-tubes in a rack
- **15.** Boiling tubes -2
- **16.** Test tube holder

#### Access to the following;

- sepastpapers. com 1. Phenolphthalein indicator supplied with a dropper
- 2. 2M NaOH supplied with a dropper
- 3. Dilute nitric (V) acid supplied with a dropper
- 4.  $0.5M Pb(NO_3)_2$  supplied with a dropper
- **5.** 0.5 g NaHCO₃ supplied with a dropper
- **6.** Acidified  $K_2Cr_2O_7$  supplied with a dropper
- 7. Acidified KMnO₄ supplied with a dropper
- **8.** Bromine water

NB/ Each of the solutions in Bottle should be supplied with a dropper.

#### **Preparations**

- *b* Solution B is prepared by dissolving 8.0g of NaOH pellets in 600cm³ of distilled H₂O then making it to one litre of solution
- ← Acidified potassium permanganate is prepared by dissolving 3.16g of solid KMnO₄ in 400cm³ of 1M H₂SO₄ acid and making it to one litre of solution.

## KIGUMO CLUSTER EXAMINATION, 2023 Kenya Certificate of Secondary Education (KCSE) 233/3 CHEMISTRY Practical Paper 3

Time: 2 ¹/₄ Hours

#### Kenya Certificate of Secondary Education

- a) Answer ALL the questions
- b) KNEC Mathematical tables and electronic calculators may be used for calculations
- c) All working MUST be clearly shown where necessary

#### 1. You are provided with;

- 4.8g of solid A which is a hydrated acid with formula H₂C₂O₄.nH₂O
- Solution B, a 0.2M sodium hydroxide solution.

You are required to determine: Solubility of solid A

#### **Procedure 1**

Fill the burette with distilled water

Place solid A in the boiling tube.

Transfer 4cm³ of distilled water from the burette into the boiling tube containing solid A.

Heat the mixture while stirring with the thermometer to a temperature of 75°C.

Allow the solution to cool while stirring with a thermometer

Record the temperature at which the crystals start to form in the table below

Add a further 2cm³ of distilled water from the burette to the mixture

Repeat procedure (iv) and (v) above and record the crystallization temperature. Complete the table below by adding the volumes of distilled water as indicated. (**PRESERVE THE CONTENTS**)

ers.com

Volume of distilled water (cm ³ )	Orystallization temperature	Solubility of solid A in g/100g of water
4.0		
6.0		
8.0		
10.0		
12.0		
14.0		

(6marks

(1 mark)

(1 Mk)

a) On the grid provided, plot a graph of solubility of solid A (y - axis) against crystallization temperature. (3 marks

- b) From the graph determine;
- i) The solubility of solid A at 80°C
- ii) The temperature at which 34g of A dissolves in 50g of water (1 mark)
- iii) Describe the trend of the graph

#### **Procedure II**

- I Transfer the contents of the boiling tube in procedure I to a clean 250ml volumetric flask.
- Add distilled water to the mark
- Label the resulting solution as C
- Fill the burette with solution C
- Pipette 25cm³ of solution B into a clean conical flask. Add three drops of phenolphthalein indicator
- *I* Titrate C against B to an accurate end point.

Record your results in table II below

Table II				(4 mks)
	Ι	II	III	
Final burette reading in cm ³				
Initial burette reading in cm ³				
Volume of solution C used in cm ³				
Calculate;				
a) Average volume of C used				(1mark)
b) Moles of solution B used				(1mark)
c) Moles of solution C given that 2 mol	es of B react w	vith 1 mole of C.		(1  mark)
d) Concentration of solution C in moles				(1 mark)
	•			
2. (a) You are provided with:				
- Solid V, which could be iron (III	) sulphate			
- 1 M nitric acid				
- 1 M sodium hydroxide			-	
- Source of heat			.s.om	
- Distilled water				
- 0.1 M Lead (II) nitrate solution			C C	
			s.	
(i) From the reagents provided, desc				
iron (III) sulphate. Write the tes	sts and expecte			
Test 1			Observations	
(1 mark)		(1 mark)		
T			01	
Test 2			Observations	
(1 mark)	- C	(1 mark)		
Test 3	N-C-	Expected	Observations	
(1 mark)	<u> </u>	(1 mark)		
(ii) Carry out the tests described in spaces provided. Test 1	(a) above usi	ng <b>solid</b> V and re	ecord the observatio	ns and inferences in the
Observations 🔨		Inferences	1	
(1 mark)		(1 mark)		
Test 2				
Test 2 Observations		Inferences		]
(1 mark)		(1 mark)		
Test 3				

Test 3

Observations	Inferences
(1 mark)	(1 mark)

3. You are provided with solid F carry out the tests below write your observations and inferences in the spaces provided

a. Place the half of solid F in a boiling tube and add 12cm³ of distilled water divide the resulting solution into five portions

b. To the first portion add acidified potassium manganate (VII) and warm

#### **BOKAKE JOINT EXAMINATIONS, 2023** Kenya Certificate of Secondary Education 233/1 **CHEMISTRY** Paper 1 (Theory) **TIME: 2 HOURS INSTRUCTIONS TO CANDIDATES** All working must be clearly shown where necessary. 1. 2. Mathematical tables and silent electronic calculations may be used The following set up was used to separate sand and water. Study it and answer the questions that follows. 1. Sold Beake Funne .19 uid Identify the method of separation. i. ii. Give a special name given to solid X and liquid Y. 2. The table below gives the number of electrons, protons and neutrons in substance X, Y and Z. Study it and answer the questions that follow. Substance Electrons Protons Neutrons Х 10 10 10 Y 10 8 10 8 Ζ 8 8 Which letters represent an ion? a. Which of the substances are isotopes? Explain. b. Calculate the mass number of substance Y. c. Study the flow chart below and answer the questions that follow. 3. Ammonia Heated black solid Drying agent ٧

 $(\frac{1}{2} \text{ mk})$  $(1 \ 1/2 \text{mks})$ (1mk)Copper metal Gas Nitrogen Name the suitable drying agent for ammonia. (1mk) a. Describe one chemical test for ammonia. b. (1mk)Name Y. (1mk)c. Given that the atomic number of element Y is 12 and that of Z is 9. 4. Write the electronic arrangement of Y and Z. (1mk)a. Draw the dot  $(\bullet)$  and cross (x) diagram for the compound formed by Y and Z. (1mk)b. Which type of structure is formed in the compound formed above? (1mk)c.

1mk

2mks

# Page | 294

- 5. 20.0cm³ of a solution containing 4g per litre of sodium hydroxide was neutralized by 8.0cm³ of dilute sulphuric (VI) acid. Calculate the concentration of sulphuric (VI) acid in moles per litre. (Na=23, O=16, H=1, S=32) (3mks)
- 6. Describe how you can extract oil from ground nuts?
- 7. Passing a small quantity of carbon (iv) oxide through calcium hydroxide, forms a white precipitate which dissolves when excess carbon (IV) oxide is bubbled through.

(3marks)

 $(\frac{1}{2} \text{ mk})$ 

(1mk)

- a) Name the white precipitate.
- b) Explain using a chemical equation why the white precipitate dissolves in excess carbon (IV) oxide. (1 ½ mks)
- c) What will happen when solution in (b) above is boiled?
- 8. The scheme below represents some reactions starting with a white solid A.





$\Delta H2$								1mk
) Write an expression	on to show the relationshi	ip between	ΔН1. ΔΗ	2 and $\Lambda$	Н3.			1mk
-	rogen react reversibly acc	-						
$N_{2(g)} + 3H_{2(g)}$		-	1					
	ield of ammonia be affect							
(i) A increase in		eu by.						2mks
(ii) An increase in	-							1mk
	ation in the table below an	nd answer th	ne questio	ons that	follow			THIK
Element	Atomic radius (nm)	Ionic radi	-	ins that				
W	0.114	0.195	ius (iiiii)					
X	0.072	0.136						
Y	0.133	0.130						
Z	0.099	0.210						
				mlaim				1 ½ mks
	n part of a metallic or a no			-	mlaim			$1\frac{7}{2}$ mks $1\frac{1}{2}$ mks
	nt in the table above likely	•			•			3mks
	names of the following co	mpounds:	::)	C		COOLI		3mks
CH ₃ COOCH ₂ CH ₃	\$		11)	C	пзСп2	СООП		
(i) CH ₂ = C – C	CHCH₃					$\sim$		
1					(	C		
					.6	•		
Br					2			
Ы				0	0			
1. The structure belo	w represents a cleansing	agent. ad above of using the dic table. Stu	~	°√x				
_			S	K.				
O			$\mathcal{T}$					
R – S – O-Na+	,	Ó	$\mathcal{L}_{\mathcal{L}}$					
		50	•					
0	•							
) State the type of c	cleansing agent represente	d above						1mk
) State <b>one</b> advanta	ge and one disadvantage	of using the	e above cl	eansing	g agent.			2mks
) State one auvanta	presents part of the period	lic table. St	udy it and	l answe	r the qu	uestions	that follow:	
,								
,								
,	.N.*						]	
,								
,	· / [	R	E		x			
2. The grid below re		R	E		x			
2. The grid below re	· / /.	R	E		x			
2. The grid below re		R	E	M	X	v		
) State one advanta	presents part of the period	lic table. Stu	udy i	t and	t and answe	t and answer the qu	t and answer the questions	t and answer the questions that follow:
	· / /	R		E	E M			
e grid below re				M		v		
i)   Identify the effective	lement that gains electron	is most read		M		v		1mk
2. The grid below rep 5 Q 2. The grid below rep 2. The grid below rep 5 (i) Identify the el (ii) Which of the p	metal is most reactive? Ex	ns most read	lily	<u>]</u>	т			1mk
2. The grid below rep <b>s</b> <b>q</b> <b>z</b> (i) Identify the el (ii) Which of the p (iii) What name is	metal is most reactive? Ex given to the family of ele	is most read xplain ements to w	lily rhich elen	hents X	T and T	belong		1mk 1mk
2. The grid below rep <b>s</b> <b>q</b> <b>z</b> (i) Identify the el (ii) Which of the p (iii) What name is 3. 3.52g of Carbon (	metal is most reactive? Ex given to the family of ele (IV) Oxide and 1.40g of w	as most read xplain ements to w vater are pro	lily hich elen	hents X	T and T hass of	belong: a hydro	carbon is comp	1mk 1mk
2. The grid below rep <b>s</b> <b>q</b> <b>z</b> (i) Identify the el (ii) Which of the p (iii) What name is 3. 3.52g of Carbon (	metal is most reactive? Ex given to the family of ele	as most read xplain ements to w vater are pro	lily hich elen	hents X	T and T hass of	belong: a hydro	carbon is comp	1mk 1mk
<ul> <li>2. The grid below reported below reported by the grid by the grid below reported by the grid below reported by the grid below reported by the grid by</li></ul>	metal is most reactive? Ex given to the family of ele (IV) Oxide and 1.40g of w	as most read xplain ements to w vater are pro	lily hich elen oduced w carbon;(F	hents $\mathbf{X}$ hen a m $\mathbf{I} = 1$ , $\mathbf{C}$	T and T hass of C= 12, 0	belong: a hydro	carbon is comp	1mk 1mk letely burnt
<ul> <li>2. The grid below reported below reported by the grid by the grid below reported by the grid by the gr</li></ul>	metal is most reactive? Ex given to the family of ele IV) Oxide and 1.40g of w he the empirical formula o	is most read xplain ements to w vater are pro of the hydroo ut not alumi	lily which elen oduced w carbon;(F inium oxi	hents $\mathbf{X}$ hen a n $\mathbf{I} = 1$ , ( de. Exp	and T hass of $C = 12$ , obtain	belong: a hydro O = 16)	carbon is comp	1mk 1mk letely burnt i 3mks 1mk
<ul> <li>2. The grid below reported below reported by the grid by the grid below reported by the grid by the gr</li></ul>	metal is most reactive? Ex given to the family of ele IV) Oxide and 1.40g of w he the empirical formula of reduce coppers Oxide bu reacts with potassium met	is most read xplain ements to w vater are pro of the hydroo ut not alumi	lily which elen oduced w carbon;(F inium oxi	hents $\mathbf{X}$ hen a n $\mathbf{I} = 1$ , ( de. Exp	and T hass of $C = 12$ , obtain	belong: a hydro O = 16)	carbon is comp	1mk 1mk letely burnt i 3mks 1mk
<ul> <li>2. The grid below reported by the grid by the</li></ul>	metal is most reactive? Ex given to the family of ele IV) Oxide and 1.40g of w he the empirical formula of reduce coppers Oxide bu reacts with potassium met	as most read xplain ements to w vater are pro- of the hydroo ut not alumi al the hydro	lily which elen oduced w carbon;(F inium oxi ogen prod	hents $\mathbf{X}$ hen a n $\mathbf{I} = 1$ , ( de. Exp	and T hass of $C = 12$ , obtain	belong: a hydro O = 16)	carbon is comp	1mk 1mk letely burnt i 3mks 1mk ce of water.



# **BOKAKE JOINT EXAMINATIONS, 2023** 233/2CHEMISTRY PAPER 2 (THEORY) **2 HOURS** Instructions to candidates (a) Answer all the questions. (b) Non-programmable silent electronic calculators and KNEC mathematical tables may be used. (c) All working must be clearly shown where necessary. 1. The set up below shows the reagents that can form hydrogen gas in a laboratory. (a) Complete the diagram to show how a dry sample of hydrogen gas can be collected. (3 marks) Dilute hydrochloric acid stpapers.com Line granules (b) Write the chemical equation for above reaction. (1 mark)(c) Why is it not advisable to use calcium in this method to prepare hydrogen? (1 mark) (d) Why is it advisable to discard the first jar of the gas collected? (1 mark)(e) The set-up below was used to investigate some of the properties of hydrogen gas. Copper (II) oxide Dry hydrogen Liquid L 0 TT $\overline{V}$ Heat Combustion tube Ice-cold water State the observation made in the combustion tube. (1 mark) i) ii) Write down the equation leading to formation of liquid L. (1 mark)iii) What property of hydrogen is being investigated? (1 mark) iv) Why is potassium oxide not used to investigate this property of hydrogen gas? (1 mark v) Hydrogen gas is used in hydrogenation of oils. What do you understand by the term? hydrogenation? (1 mark)vi) Give any two other industrial uses of hydrogen gas. (2 marks)







7. Equal masses (0.65g) of zinc granules and zinc powder were reacted in separate experiments with 2.0M hydrochloric acid. The volume of hydrogen liberated was measured at half-minute intervals and these volumes were measured at s.t.p. The results obtained are given in the table below.

Time (minutes)	Volume of Hydrogen produced using	Volume of Hydrogen produced
	zinc granules	using zinc powder.
0.5	17	88
1.0	34	144
1.5	76	207
2.0	134	222
2.5	184	224
3.0	216	224
3.5	222	224
4.0	224	224

- a) Plot the graphs of the volume of hydrogen produced against time using zinc granules and zinc powder respectively on the axis. (4 marks)
- b) Which reaction has a greater initial rate? Explain your answer.
- c) At what time is the rate of the two reactions the same? Explain.

(molar volume at s.t.p = 22.4dm3, zn = 65)

d) What mass of zinc will be left after one minute in the reaction between zinc powder and hydrochloric acid.

(2 marks)

(2 marks)

(2 marks)

e) On the same axis, draw a sketch of the graph that would be obtained if the zinc granules are reacted with 1.0M hydrochloric acid.
 (1 mark)

CHEN	<b>IISTRY</b>					
Practi	ical 3					
Time	2 ¼ hours					
1. Yo	ou are provided with the following					
	-	,				
0	4cm of magnesium ribbon					
0	2M hydrochloric acid solution A			.1 1 1	11 · · 1	
	bu are require to determine the rate	e of reaction of i	magnesium v	with hydroc	chloric acid	
	ROCEDURE		224			
•	Take four 100cm ³ plastic beaker a					
•	To the first beaker, place 10cm ³ o					
•	To the second beaker place 8cm ³					
•	To the third beaker place $6 \text{ cm}^3$ of				$\mathbf{A}$	
•	To the forth beaker place 4cm ³ of			ter.	~~.	
•	Cut the magnesium ribbon into 4	•		1		
•	Place a piece of 1cm magnesium	ubbon into the fi	rst beaker and	d start the s	op watch	
	Description for the second sec					··· 41 4-1.1 - 11
	Record the time taken for the n	nagnesium ribbo	on to disappe	ear complet		
	Record the time taken for the n Repeat this procedure with beak	nagnesium ribbo	on to disappe	ear complet		in the table below (4mks)
	Repeat this procedure with beak	nagnesium ribbo er 2, 3 and 4 to o	on to disappe	ear complet table.	tely. Record it	
	Repeat this procedure with beak Beaker	nagnesium ribbo er 2, 3 and 4 to o	on to disappe	ear complet table. 3	tely. Record it	
	Repeat this procedure with beak Beaker Volume of acid (cm ³ )	nagnesium ribbo           er 2, 3 and 4 to o           1           10	on to disappe	ear complet table. 3 6	tely. Record it	
	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )	nagnesium ribbo er 2, 3 and 4 to o	on to disappe	ear complet table. 3	tely. Record it	
	Repeat this procedure with beak Beaker Volume of acid (cm ³ )	nagnesium ribbo           er 2, 3 and 4 to o           1           10	on to disappe	ear complet table. 3 6	tely. Record it	
	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)	agnesium ribbo er 2, 3 and 4 to o 1 10 0	on to disappe complete the 2 8 2 2	ear complete table. 3 6 4	tely. Record it	(4mks)
	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)	agnesium ribbo er 2, 3 and 4 to o 1 10 0	on to disappe complete the 2 8 2 2	ear complete table. 3 6 4	tely. Record it	
o) Fr	Beaker         Volume of acid (cm ³ )         Volume of water (cm ³ )         Time (second)         out a graph of volume of acid (cm ³ ) a com the graph determine;	agnesium ribbo er 2, 3 and 4 to o 1 10 0 gainst time (sec)	on to disappe complete the 2 2 2 2 3 in the graph	ear complete table. 3 6 4	tely. Record it	(4mks) (3mks)
o) Fr i)	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)           ot a graph of volume of acid (cm ³ ) a com the graph determine;           Time taken for magnesium to disa	agnesium ribbo er 2, 3 and 4 to o 1 10 0 gainst time (sec)	on to disapped complete the $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$	ear complet table. 3 6 4 provided.	4           4           6	(4mks) (3mks) (1mk)
o) Fr i) ii)	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)           ot a graph of volume of acid (cm ³ ) a           om the graph determine;           Time taken for magnesium to disa           Volume of the acid in which mag	agnesium ribbo er 2, 3 and 4 to o 1 10 0 gainst time (sec) ppear completel resium takes 100	on to disapped complete the $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$	ear complet table. 3 6 4 provided.	4           4           6	(4mks) (3mks) (1mk) (1mk)
b) Fr i) ii) c) Th	Repeat this procedure with beak         Beaker         Volume of acid (cm ³ )         Volume of water (cm ³ )         Time (second)         ot a graph of volume of acid (cm ³ ) a         om the graph determine;         Time taken for magnesium to disa         Volume of the acid in which magneriate of reaction for the reaction at	agnesium ribbo er 2, 3 and 4 to o 1 10 0 ugainst time (sec) ppear completel resium takes 100 100secs	on to disapped complete the 2 2 ) in the graph y at 5cm ³ ) seconds to d	ear complet table. 3 6 4 provided.	4 4 6 mpletely	(4mks) (3mks) (1mk) (1mk) (2mks)
b) Fr i) ii) c) Th	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)           ot a graph of volume of acid (cm ³ ) a           om the graph determine;           Time taken for magnesium to disa           Volume of the acid in which mag	agnesium ribbo er 2, 3 and 4 to o 1 10 0 ugainst time (sec) ppear completel resium takes 100 100secs	on to disapped complete the 2 2 ) in the graph y at 5cm ³ ) seconds to d	ear complet table. 3 6 4 provided.	4 4 6 mpletely	(4mks) (3mks) (1mk) (1mk)
<ul> <li>b) Fr</li> <li>i)</li> <li>ii)</li> <li>c) Th</li> <li>d) Na</li> </ul>	Beaker         Volume of acid (cm ³ )         Volume of water (cm ³ )         Time (second)         ot a graph of volume of acid (cm ³ ) a         om the graph determine;         Time taken for magnesium to disa         Volume of the acid in which magneriate of reaction for the reaction at         ame one factor been investigated at	agnesium ribbo er 2, 3 and 4 to o 1 10 0 ugainst time (sec) ppear completel resium takes 100 100secs	on to disapped complete the 2 2 ) in the graph y at 5cm ³ ) seconds to d	ear complet table. 3 6 4 provided.	4 4 6 mpletely	(4mks) (3mks) (1mk) (1mk) (2mks)
<ul> <li>b) Fr</li> <li>i)</li> <li>ii)</li> <li>c) Th</li> <li>d) Na</li> </ul>	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)           ot a graph of volume of acid (cm ³ ) a           om the graph determine;           Time taken for magnesium to disa           Volume of the acid in which magnes           where a construction for the reaction at           and one factor been investigated a           bu are provided with	agnesium ribbo er 2, 3 and 4 to o 1 10 0 gainst time (sec) ppear completel resium takes 100 100secs bove that can af	on to disapped complete the 2 3 2 3 3 3 in the graph y at 5cm ³ 3 seconds to d effect the rate	ear complete table. 3 6 4 provided. lisappear co of reaction	tely. Record it	(4mks) (3mks) (1mk) (1mk) (2mks)
<ul> <li>b) Fr</li> <li>i)</li> <li>ii)</li> <li>c) Th</li> <li>d) Na</li> </ul>	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)           ot a graph of volume of acid (cm ³ ) a           om the graph determine;           Time taken for magnesium to disa           Volume of the acid in which magnes           terate of reaction for the reaction at           out are provided with           Solution B containing 4. 26g of p	agnesium ribbo er 2, 3 and 4 to o 1 10 0 gainst time (sec) ppear completel resium takes 100 100secs bove that can af	on to disapped complete the 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ar complete table. 3 6 4 provided. disappear co of reaction litre (K2Cr2	More that the second it the second it the second it the second se	(4mks) (3mks) (1mk) (1mk) (2mks) (1mk)
<ul> <li>b) Fr</li> <li>i)</li> <li>ii)</li> <li>c) Th</li> <li>d) Na</li> </ul>	Repeat this procedure with beak Beaker Volume of acid (cm ³ ) Volume of water (cm ³ ) Time (second) ot a graph of volume of acid (cm ³ ) a om the graph determine; Time taken for magnesium to disa Volume of the acid in which magnesite the acid in which magnesite the acid in which magnesite the acid in the second at the acid of the reaction at the acid of the reaction at the acid of the acid in which magnesite the acid in the second at the acid of the acid in which magnesite the acid in the acid at the acid of the acid in the acid at the acid of the acid at the acid of the acid at the acid at the acid of the acid at	agnesium ribbo er 2, 3 and 4 to o 1 10 0 gainst time (sec) ppear completel resium takes 100 100secs bove that can af	on to disapped complete the 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ar complete table. 3 6 4 provided. disappear co of reaction litre (K2Cr2	More that the second it the second it the second it the second se	(4mks) (3mks) (1mk) (1mk) (2mks) (1mk)
<ul> <li>Francisco (1996)</li> <li>Francisco</li></ul>	Repeat this procedure with beak           Beaker           Volume of acid (cm ³ )           Volume of water (cm ³ )           Time (second)           ot a graph of volume of acid (cm ³ ) a           om the graph determine;           Time taken for magnesium to disa           Volume of the acid in which magnes           ue rate of reaction for the reaction at           out are provided with           Solution B containing 4. 26g of p	agnesium ribbo er 2, 3 and 4 to o 1 10 0 ogainst time (sec) opear completel resium takes 100 100secs bove that can af	on to disapped complete the 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ar complete table. 3 6 4 provided. disappear co of reaction litre (K2Cr2	More that the second it the second it the second it the second se	(4mks) (3mks) (1mk) (1mk) (2mks) (1mk)

Fill the burette with solution B. Pipette 25cm³ of it and transfer into a conical flask. Titrate against C until the colour turns green. Record your results in the table below. Repeat this procedure to complete the table (4mks)

Titration	1	2	3
Final burette reading (cm ³ )			
Initial burette reading (cm ³ )			
Volume of solution B used (cm ³ )			

a)	Determine the average volume of B used		(1mk)	
b)	Calculate the concentration of solution B in mo	(1mk)		
c)	Calculate the number of moles of B that reacted	1	(1mk)	
d)	Given the equation			
	$Cr_2O_7 ^{2-} + 6Fe^{2+} + 14 H^+ \longrightarrow Cr^{3+}_{(aq)} + 5$	$5  Fe^{3+}_{(aq)} + 7H_2O_{(l)}$		
(i)	Calculate the concentration of C in moles per li	tre	(1mk)	
(ii)	(ii) Calculate the RFM of C			
(iii	iii) Determine the value of n in the formula of compound C			
2.	You are provided with solid F			
a)	Put a spatula full of F in a test tube and heat stre			
	Observation	inference		
	(2 marks)	(2 marks)		
	(2 marks)	(2 marks)		
b)	Place the remaining of F in a test tube and add	8cm ³ of distilled water and shake. Divide into thr	ree portions	
	Observation	inference	1	
	(½ marks)	(½ marks)		
c)	To the first portion add 2 drops of NaOH Solut			
	Observation	inference		
	(1 mark)	(1 mark)		
	(T mark)			
d)	To the second portion, add two drops of Ammo	nium solution dropwise until in excess		
	Observation	inference		
	(1 mark)	(1 mark)		
``				
e)	To the third portion, add 4 drops of dilute HCl a Observation	inference		
	(1 mark)	(1 mark)		
3.	You are provided with solid T			
a)	Put whole of solid T into a boiling tube and add			
	Observation	inference		
		$(1/\operatorname{month})$		
	(½ mark)	(½ mark)		
	Divide the solution into 3 equal portions			
b)	To the first portion add 3 drops of universal ind	licator paper, note the PH		
	Observation	inference		
	(1 mark)	(1 mark)		
	To the second portion and ? draws of a different	notossium mongenete (VIII) solution and an		
c)	To the second portion add 3 drops of acidified, Observation	inference		
	(1 mark)	(1 mark)		
1				
d)	To the third portion add 2cm ³ of sodium carbor	nate solution		
1	Observation	inference		
1				
1	(1 mark)	(1 mark)		
1				